Next Article in Journal
Linear Model Predictive Control for a Coupled CSTR and Axial Dispersion Tubular Reactor with Recycle
Previous Article in Journal
M-CFIS-R: Mamdani Complex Fuzzy Inference System with Rule Reduction Using Complex Fuzzy Measures in Granular Computing
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Parameter and Reliability Inferences of Inverted Exponentiated Half-Logistic Distribution under the Progressive First-Failure Censoring

Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China
*
Author to whom correspondence should be addressed.
Mathematics 2020, 8(5), 708; https://doi.org/10.3390/math8050708
Submission received: 13 April 2020 / Revised: 23 April 2020 / Accepted: 27 April 2020 / Published: 3 May 2020

Abstract

:
Using progressive first-failure censored samples, we mainly study the inferences of the unknown parameters and the reliability and failure functions of the Inverted Exponentiated Half-Logistic distribution. The progressive first-failure censoring is an extension and improvement of progressive censoring, which is of great significance in the field of lifetime research. Besides maximum likelihood estimation, we use Bayesian estimation under unbalanced and balanced losses: General Entropy loss function, Squared Error loss function and Linex loss function. Approximate explicit expression of Bayesian estimation is given using Lindley approximation method for point estimation and Metropolis-Hastings method for point and interval estimation. Bayesian credible intervals and asymptotic confidence intervals are derived in the form of average length and coverage probability. To show the research effects, a simulation study and practical data analysis are carried out. Finally, we discuss the optimal censoring mode under four different criteria.

1. Introduction

Usually, in lifetime experiment and reliability research, there are limitations like time, money, resources, or due to personnel transfer and accidents, data cannot be recorded completely. In these cases, we often use censored samples. At present, many censoring schemes have been applied to lifetime tests. There exist two most common schemes named Type-I censoring and Type-II censoring. They have been studied by many scholars such as Fujii [1] and Kateri [2]. In terms of content, Type-I censoring means that the test ends at a pre-fixed time, while in Type-II censoring, the test ends when the m-th ( N > m ) failure occurs. The common disadvantage is that no unit in the test can be removed before the test is completely finished. Thus, the progressive censoring was proposed, which has better efficiency in lifetime experiments. Under this censoring scheme, one can remove the test units at various stages of the experiment. For more details, refer to Balakrishnan [3].
Although the progressive censoring can significantly improve the experimental efficiency, in many cases, the duration of the experiment is still too long. Then the first-failure censoring was proposed. One of the most remarkable features of this censoring is grouping data, which can greatly save time and cost.
To better improve the experimental efficiency, Wu and Ku [4] proposed the progressive first-failure censoring. This mode is of great significance in reliability research. It is a combination of first-failure censoring and progressive censoring, and the two main features of this scheme are the grouped samples and the m-dimension random vector = ( R 1 , R 2 , , R m ) . The vector is corresponding to the number of additional groups removed when each failure occurs. In this scheme, we randomly divide N ( N = n × k ) units into n groups, each group contains k independent units. Observing these n groups simultaneously and independently. When the i-th failure appears, remove the randomly selected R i groups together with the group containing the i-th failure. The experiment ends when the m-th failure unit is observed. At this point, all remaining surviving units are removed. m and = ( R 1 , , R m ) are pre-allocated constants and i = 1 m R i + m = n . Thus, considerable time and resources are saved, and a large part of risky units may be removed at various period of the test. In addition, this mode can be easily transformed into other modes. Thus, it is widely used in experimental design due to its flexibility.
For example:
  • The first-failure censoring can be obtained when = ( R 1 , , R m ) = ( 0 , , 0 ) .
  • Let k = 1 , this scheme is converted to progressive censoring.
  • When = ( R 1 , , R m 1 , R m ) = ( 0 , , 0 , n m ) and k = 1 , the Type-II censoring is presented.
Assume x 1 ; m : n : k , x 2 ; m : n : k , , x m ; m : n : k are the progressive first-failure censoring samples from a continuous function. Then the joint density function is
f X 1 : n : k , , X m : n : k x 1 , , x m = A i = 1 m k f x i [ 1 F x i ] k ( 1 + R i ) 1
where F ( · ) means the cumulative distribution function(c.d.f) and f ( · ) represents the density function (p.d.f). Here we define R 0 = 0 and A = i = 0 m 1 n i k = 0 i R k is a constant determined by n, m and .
The Half-Logistic distribution (HLD) is a very important distribution in lifetime test. It is derived from Logistic distribution and has an increasing hazard rate function. Many scholars have studied this distribution such as Balakrishnan [5,6]. It can be used in the failure model of life-testing research. Adatia [7] studied the parameters of HLD using generalized ranked set sampling technique. Asgharzadeh [8] compared several methods of estimating the parameters of HLD. Jung-In and Kang [9] derived the entropy of generalized HLD under Type-II censoring scheme using Bayes estimators and compared them through mean square error and bias.
The Inverted Exponentiated Half-Logistic distribution (IEHLD) is the inverse of exponentiated Half-Logistic distribution (EHLD). At present, there are many studies and applications on EHLD. Rastogi [10] estimated the parameters and reliability characteristics of EHLD using MLE and Bayes estimation under progressive Type-II censoring scheme. Gui [11] considered the joint confidence regions and the MLE, inverse moment and modified inverse moment estimators of EHLD.
However, at the same time, few people study IEHLD. It is an extension to generalized HLD with nonmonotone hazard rate. Shirke [12] studied the maximum likelihood estimations and the asymptotic confidence intervals for parameters of generalized HLD, and considered its inverse as a member of the generalized inverted scale family to give estimates. A scale family of distributions plays a significant role in lifetime research, and the inverses of these distributions have been studied by many scholars. Dey [13] analyzed lifetime data using inverted exponential distribution. Panahi [14] studied the maximum likelihood estimations and Bayesian estimations of parameters of inverted exponentiated Rayleigh distribution under adaptive Type-II progressive hybrid censoring scheme. Moreover, Lee and Cho [15] applied the maximum likelihood estimations, Importance sampling method and Lindley method to estimate the statistical inference of IEHLD using progressive Type II censored samples.
In addition, when the value of the shape parameter is set to be 1, the IEHLD can be transformed into the usual HLD, thus it has greater inclusiveness and flexibility in the practice of reliability research and lifetime test correspondingly.
Furthermore, through the graph of hazard rate function of IEHLD in Figure 1, we can see that it has one maximum. In this respect, IEHLD can be performed as an alternative lifetime model for several well-known distributions such as Generalized Inverted Rayleigh distribution (GIRD) and Inverse Weibull distribution (IWD), which have the same properties in terms of hazard rate.
The p.d.f, c.d.f, hazard function and reliability function of IEHLD are given as below:
f x ; γ , β = 2 γ β x 2 exp 1 β x 1 exp ( 1 β x ) γ 1 1 + exp ( 1 β x ) γ + 1 , x > 0 ,
F x ; γ , β = 1 1 exp ( 1 β x ) 1 + exp ( 1 β x ) γ , x > 0 ,
R ( t ) = 1 exp ( 1 β x ) 1 + exp ( 1 β x ) γ , t > 0 ,
H ( t ; γ , β ) = 2 γ β t 2 exp 1 β t 1 exp 2 β t 1 , t > 0 ,
where β > 0 and γ > 0 are the shape and scale parameters. Please note that when γ = 1 , the distribution reduce to the HLD. The graph of hazard function is presented in Figure 1.
This paper mainly studies the parameters and the reliability and failure functions of IEHLD using progressive first-failure censored samples. The two main objectives are the maximum likelihood estimation (MLE) and the Bayesian estimation. The asymptotic interval of the parameters are given using MLE, and the Bayesian estimation is prestented under General Entropy loss function, Linex loss function and Squared Error loss function. We use Lindley approximation method and Metropolis-Hastings (M-H) method to approximate the Bayesian estimation to give an explicit solution.
The rest sections in this paper can be summarized as follows: First, we focus on the MLEs of the parameters and the reliability and failure functions in Section 2. The asymptotic intervals of parameters are constructed at the same time. In Section 3, the Bayesian estimations using Lindley approximation method and M-H method are derived, then the Bayesian credible intervals of parameters are given. Next, simulation studies are conducted in Section 4 while practical data analysis is presented in Section 5. In Section 6, an optimal censoring plan under four criteria is derived. And in Section 7, we carry out a brief conclusion.

2. Maximum Likelihood Estimator

Suppose x 1 ; m : n : k , x 2 ; m : n : k , , x m ; m : n : k be the progressive first-failure censored samples from IEHLD with = ( R 1 , R 2 , , R m ) , group n and group size k. For convenience, we replace ( x 1 ; m : n : k , x 2 ; m : n : k , , x m ; m : n : k ) with X . The likelihood function can be obtained as:
L γ , β | X = A k m i = 1 m 2 γ β x i 2 exp 1 β x i 1 exp ( 1 β x i ) γ k ( 1 + R i ) 1 1 + exp ( 1 β x i ) γ k ( 1 + R i ) + 1
Then we can obtain the log-likelihood function:
l γ , β | X = ln A + m ln 2 k + m ln γ m ln β 2 i = 1 m ln x i i = 1 m 1 β x i γ k i = 1 m ( 1 + R i ) ln Z 1 , 1 X ( β ) i = 1 m ln 1 exp ( 2 β x i )
The corresponding likelihood functions of γ and β are:
l γ = m γ k i = 1 m ( 1 + R i ) ln Z 1 , 1 X ( β ) = 0 ,
l β = m β + 1 β 2 i = 1 m 1 x i 2 β 2 i = 1 m W 2 , 2 X ( β ) x i 2 k γ β 2 i = 1 m 1 + R i x i W 1 , 2 X ( β ) = 0 .
where Z a , b X ( β ) = 1 + exp ( a β x i ) 1 exp ( b β x i ) and W a , b X ( β ) = exp ( a β x i ) 1 exp ( b β x i ) .
Solving Equation (8), the MLE of γ is:
γ ^ = m k i = 1 m ( R i + 1 ) ln Z 1 , 1 X ( β )
Putting Equation (10) into Equation (9), the MLE of β can be written as:
g ( β ) = 1 m i = 1 m 1 x i 1 2 W 2 , 2 X ( β ) 2 i = 1 m R i + 1 x i W 1 , 2 X ( β ) i = 1 m R i + 1 ln Z 1 , 1 X ( β )
Since g ( β ) is related to γ ^ and β , the MLE of β cannot be obtained directly. Using the “optimal” command in R software, the MLEs of γ ^ and β ^ can be solved easily.
Then, substituting γ ^ and β ^ into Equations (4) and (5), the MLEs of R ( t ) and H ( t ) are:
R ^ ( t ) = 1 exp ( 1 β ^ t ) 1 + exp ( 1 β ^ t ) γ ^ , H ^ ( t ) = 2 γ ^ β ^ t 2 exp 1 β ^ t 1 exp 2 β ^ t 1

Asymptotic Interval Estimation

We mainly present the asymptotic intervals for parameters in this subsection. Let θ = ( γ , β ) , the Fisher information matrix is shown below:
I ( θ ) = E 2 l ( γ , β ) γ 2 2 l ( γ , β ) γ β 2 l ( γ , β ) β γ 2 l ( γ , β ) 2 β
The elements in the matrix are:
2 l ( γ , β ) γ 2 = m γ 2 , 2 l ( γ , β ) γ β = 2 l ( γ , β ) β γ = 2 k β 2 i = 1 m R i + 1 x i W 1 , 2 X ( β ) , 2 l ( γ , β ) β 2 = m β 2 2 β 3 i = 1 m 1 x i 2 k γ β 3 i = 1 n Z 2 , 2 X ( β ) β x i 2 R i + 1 x i W 1 , 2 X ( β ) 4 β 3 i = 1 m W 2 , 2 X ( β ) x i W 0 , 2 X ( β ) β x i 1 .
Using θ ^ = ( γ ^ , β ^ ) to represent the MLE of θ = ( γ , β ) . Then we write the observed Fisher information matrix as follows:
I ( θ ^ ) = 2 l ( γ , β ) γ 2 2 l ( γ , β ) γ β 2 l ( γ , β ) β γ 2 l ( γ , β ) 2 β θ = θ ^
Thus, the observed variance-covariance matrix of θ ^ can be obtained as:
I 1 ( θ ^ ) = V ^ a r ( γ ^ ) C ^ o v ( γ ^ , β ^ ) C ^ o v ( β ^ , γ ^ ) V ^ a r ( β ^ )
From the properties of MLE and normal distribution, we can deduce that θ ^ approximately obey the bivariate normal distribution which have θ and I 1 ( θ ^ ) as the expectation and variance-covariance matrix. Then the two-sided equal tail asymptotic intervals of γ and β under confidence level α can be constructed as: γ ^ ± u α / 2 V ^ a r ( γ ^ ) and β ^ ± u α / 2 V ^ a r ( β ^ ) . Here, u α / 2 represents the upper ( α / 2 ) -th percentile of standard normal distribution.

3. Bayesian Estimation

Under progressive first-failure censoring scheme, we mainly discuss the Bayesian estimations of the unknown parameters and reliability characteristics of IEHLD in this section.
In addition, three loss functions are used here. The first one is Squared Error loss function (SELF): L ( α , α ^ ) = α ^ α 2 , which is a symmetric loss widely used in statistical research and practical cases. The second is Linex loss function (LLF): L ( α , α ^ ) = exp h α ^ α h α ^ α 1 . It is an asymmetric loss first proposed by Klebanov [16], and its mathematical properties were studied by Klebanov and Rachev [17] and Zellner [18]. The last one is called General Entropy loss function (GELF): L ( α , α ^ ) = α ^ / α q q ln α ^ / α 1 , which is a generalization of the entropy loss and is also an asymmetric loss introduced by Calabria and Pulcini [19].
For our estimation, the prior distributions of unknown parameters need to be determined first. In this case, the joint conjugate prior of γ and β is not easy to obtain. Consider the gamma distribution has good flexibility and can be a prior distribution suitable for γ and β , we assume that γ and β follows gamma distribution G 1 ( a 1 , b 1 ) and G 2 ( a 2 , b 2 ) . They can be written as:
G 1 ( γ ) = b 1 a 1 Γ ( a 1 ) γ a 1 1 e b 1 γ , γ > 0 , a 1 , b 1 > 0 ,
G 2 ( β ) = b 2 a 2 Γ ( a 2 ) β a 2 1 e b 2 β , β > 0 , a 2 , b 2 > 0 .
Then the joint prior distribution of γ and β reads:
G ( γ , β ) γ a 1 1 β a 2 1 e ( b 1 γ + b 2 β )
Using Equations (6) and (14), the joint posterior distribution of γ and β can be obtained as:
π ( γ , β | X ) = G ( γ , β ) L ( X | γ , β ) 0 0 G ( γ , β ) L ( X | γ , β ) d γ d β = D γ m + a 1 1 β m + a 2 1 exp ( b 1 γ b 2 β i = 1 m 1 β x i ) × i = 1 m 1 exp ( 1 β x i ) γ k ( 1 + R i ) 1 x i 1 + exp ( 1 β x i ) γ k ( 1 + R i ) + 1
Where D = 1 / ( 0 0 G ( γ , β ) L ( X | γ , β ) d γ d β ) have no concern with γ and β , is a normalizing constant.
Thus, using Equation (15), Bayesian estimation of any function of γ and β under different loss functions can be obtained. For example, let ϕ ( γ , β ) represents the function related to γ and β , then the Bayesian estimation under SELF is the posterior expectation of ϕ ( γ , β ) , say,
E ϕ ( γ , β ) | X ˜ = 0 + 0 + ϕ ( γ , β ) G γ , β L ( X ˜ | γ , β ) d γ d β 0 + 0 + G γ , β L ( X ˜ | γ , β ) d γ d β
Let ϕ ( γ , β ) = γ and H ( t ) , the Bayesian estimations of γ and H ( t ) under SELF are:
γ ^ S E L F = 0 + 0 + γ G γ , β L ( X ˜ | γ , β ) d γ d β 0 + 0 + G γ , β L ( X ˜ | γ , β ) d γ d β , H ^ ( t ) S E L F = 0 + 0 + H ( t ) G γ , β L ( X ˜ | γ , β ) d γ d β 0 + 0 + G γ , β L ( X ˜ | γ , β ) d γ d β .
In the same way, the Bayesian estimations of β and R ( t ) under SELF can be obtained.
While under loss function LLF and GELF, the Bayesian estimations of α are:
α ^ L L F = 1 h ln E α [ exp ( h α ) | X ˜ ] ,
α ^ G E L F = E α [ α q | X ˜ ] 1 / q
Replace α with γ and H ( t ) , the Bayesian estimations under LLF, GELF can be considered to be:
γ ^ L L F = 1 h ln 0 + 0 + e h γ G γ , β L ( X ˜ | γ , β ) d γ d β 0 + 0 + G γ , β L ( X ˜ | γ , β ) d γ d β ,
H ^ ( t ) L L F = 1 h ln 0 + 0 + e h H ( t ) G γ , β L ( x ˜ | γ , β ) d γ d β 0 + 0 + G γ , β L ( x ˜ | γ , β ) d γ d β
and
γ ^ G E L F = 0 + 0 + γ q G γ , β L ( X ˜ | γ , β ) d γ d β 0 + 0 + G γ , β L ( X ˜ | γ , β ) d γ d β 1 / q ,
H ^ ( t ) G E L F = 0 + 0 + H ( t ) q G γ , β L ( X ˜ | γ , β ) d γ d β 0 + 0 + G γ , β L ( X ˜ | γ , β ) d γ d β 1 / q
the Bayesian estimations of β and R ( t ) can be obtained likewise.
From above, it can be seen that the form of Bayesian estimation is the ratio of two multiple integrals, thus it is unfeasible to obtain an explicit solution. In the next two subsections, we use Lindley approximation method and M-H method to approximate Bayesian estimation.

3.1. Lindley Approximation Method

In many studies, Bayesian estimation of distribution is usually in the form of multiple integral ratio, which is difficult to get analytical solution. The Lindley approximation method applied in this subsection was given by Lindley [20]. It is a point estimation which can be used to solve this problem.
Using Lindley approximation method, the Bayesian estimation of ϕ ( γ , β ) under SELF can be written as:
ϕ ^ L B = ϕ ^ + 1 / 2 σ ^ 11 ϕ ^ 11 + 2 ϕ ^ 1 ϱ 1 + σ ^ 12 ϕ ^ 12 + 2 ϕ ^ 1 ϱ 2 + σ ^ 21 ϕ ^ 21 + 2 ϕ ^ 2 ϱ 1 + σ ^ 22 ϕ ^ 22 + 2 ϕ ^ 2 ϱ 2 + ^ 30 σ ^ 11 + 2 ^ 21 σ ^ 12 + ^ 12 σ ^ 22 ϕ ^ 1 σ ^ 11 + ϕ ^ 2 σ ^ 12 + ^ 21 σ ^ 11 + 2 ^ 12 σ ^ 21 + ^ 03 σ ^ 22 ϕ ^ 1 σ ^ 21 + ϕ ^ 2 σ ^ 22
where
ϕ 1 = ϕ γ , ϕ 2 = ϕ β , ϕ 11 = 2 ϕ γ 2 , ϕ 12 = 2 ϕ γ β , ϕ 21 = 2 ϕ β γ , ϕ 22 = 2 ϕ β 2 , ϱ 1 = ϱ γ = ( a 1 1 ) γ b 1 , ϱ 2 = ϱ β = ( a 2 1 ) β b 2 , 30 = 3 ( γ , β ) γ 3 = 2 m γ 3 , 21 = 0 , 12 = 3 ( γ , β ) γ β 2 = 2 k β 3 i = 1 m 1 + R i x i W 1 , 2 X ( β ) 2 Z 2 , 2 X ( β ) β x i , 03 = 3 ( γ , β ) β 3 = 2 m β 3 + 6 β 4 i = 1 m 1 x i 2 k γ β 5 i = 1 m 1 + R i x i W 1 , 2 X ( β ) × 2 W 2 , 2 X ( β ) W 0 , 2 X ( β ) β x i 1 + Z 2 , 2 X ( β ) β x i 2 Z 2 , 2 X ( β ) 3 β x i 1 4 β 4 i = 1 m W 2 , 2 X ( β ) W 0 , 2 X ( β ) x i 2 2 W 2 , 2 X ( β ) β x i 1 8 β 3 i = 1 m W 2 , 2 X ( β ) x i W 0 , 2 X ( β ) β x i 1 2 .
Here ϱ = ln G ( γ , β ) = ( a 1 1 ) ln γ + ( a 2 1 ) ln β b 1 γ b 2 β and σ ^ i j is the element in i j -th position of the corresponding I 1 ( θ ^ ) given in (11).
Then, let ϕ ( γ , β ) = γ and β , the Bayesian estimations of γ and β under SELF using lindley approximation method can be easily obtained as:
γ ^ S E L F = γ ^ + ϱ ^ 1 σ ^ 11 + ϱ ^ 2 σ ^ 12 + 1 / 2 ^ 30 σ ^ 11 2 + ^ 12 σ ^ 11 σ ^ 22 + 2 σ ^ 21 2 + ^ 03 σ ^ 12 σ ^ 22 , β ^ S E L F = β ^ + ϱ ^ 1 σ ^ 21 + ϱ ^ 2 σ ^ 22 + 1 / 2 ^ 30 σ ^ 11 σ ^ 12 + 3 ^ 12 σ ^ 22 σ ^ 12 + ^ 03 σ ^ 22 2
In the same way, let ϕ ( γ , β ) = R ( t ) , we have:
ϕ 1 = Z 1 , 1 t ( β ) γ ln Z 1 , 1 t ( β ) , ϕ 2 = γ β 2 t N 1 , 1 t ( β ) Z 1 , 1 t ( β ) γ + 1 Z 1 , 1 t ( β ) 1 + 1 , ϕ 11 = Z 1 , 1 t ( β ) γ ln Z 1 , 1 t ( β ) 2 , ϕ 12 = 2 β 2 t W 2 , 2 t ( β ) Z 1 , 1 t ( β ) γ 1 γ ln Z 1 , 1 t ( β ) = ϕ 21 , ϕ 22 = 2 γ β 3 t N 1 , 1 t ( β ) Z 1 , 1 t ( β ) γ 1 β t 2 γ 1 W 1 , 2 t ( β ) W 0 , 1 t ( β ) N 0 , 1 t ( β ) + Z 1 , 1 t ( β ) + 1 t .
where N a , b t ( β ) = exp ( a β t ) / 1 + exp ( 1 β t ) b .
Next, for H ( t ) , we have:
ϕ ( γ , β ) = H ( t ) , ϕ 1 = 2 β t 2 W 1 , 2 t ( β ) , ϕ 2 = 2 γ β 2 t 2 W 1 , 2 t ( β ) Z 2 , 2 t ( β ) β t 1 , ϕ 11 = 0 , ϕ 12 = 2 β 2 t 2 W 1 , 2 t ( β ) Z 2 , 2 t ( β ) β t 1 = ϕ 21 , ϕ 22 = 2 γ β 3 t 2 W 1 , 2 t ( β ) 1 β 2 t 2 8 W 1 , 2 t ( β ) 3 + 1 4 W 2 , 2 t ( β ) β t W 1 , 2 t ( β ) + 1 + 2 .
Thus, the Lindley approximations of reliability and failure functions say R ( t ) and H ( t ) under SELF are:
R ^ ( t ) S E L F = R ^ ( t ) + 1 / 2 σ ^ 11 ϕ ^ 11 + 2 ϕ ^ 1 ϱ 1 + σ ^ 12 ϕ ^ 12 + 2 ϕ ^ 1 ϱ 2 + σ ^ 21 ϕ ^ 21 + 2 ϕ ^ 2 ϱ 1 + σ ^ 22 ϕ ^ 22 + 2 ϕ ^ 2 ϱ 2 + ^ 30 σ ^ 11 + 2 ^ 21 σ ^ 12 + ^ 12 σ ^ 22 ϕ ^ 1 σ ^ 11 + ϕ ^ 2 σ ^ 12 + ^ 21 σ ^ 11 + 2 ^ 12 σ ^ 21 + ^ 03 σ ^ 22 ϕ ^ 1 σ ^ 21 + ϕ ^ 2 σ ^ 22 , H ^ ( t ) S E L F = H ^ ( t ) + 1 / 2 σ ^ 11 ϕ ^ 11 + 2 ϕ ^ 1 ϱ 1 + σ ^ 12 ϕ ^ 12 + 2 ϕ ^ 1 ϱ 2 + σ ^ 21 ϕ ^ 21 + 2 ϕ ^ 2 ϱ 1 + σ ^ 22 ϕ ^ 22 + 2 ϕ ^ 2 ϱ 2 + ^ 30 σ ^ 11 + 2 ^ 21 σ ^ 12 + ^ 12 σ ^ 22 ϕ ^ 1 σ ^ 11 + ϕ ^ 2 σ ^ 12 + ^ 21 σ ^ 11 + 2 ^ 12 σ ^ 21 + ^ 03 σ ^ 22 ϕ ^ 1 σ ^ 21 + ϕ ^ 2 σ ^ 22 .
Similarly, the Lindley approximations of parameters and reliability characteristic under LLF are:
For γ :
ϕ γ , β = e h γ , ϕ 1 = h e h γ , ϕ 11 = h 2 e h γ , ϕ 2 = ϕ 12 = ϕ 21 = ϕ 22 = 0 .
Then the Lindley approximation of γ under LLF can be written as:
γ ^ L L F = 1 h ln e h γ + 1 / 2 h 2 e h γ 2 h e h γ ϱ 1 σ ^ 11 2 h e h γ ϱ 2 σ ^ 12 h e h γ σ ^ 11 ^ 30 σ ^ 11 + 2 ^ 21 σ ^ 12 + ^ 12 σ ^ 22 h e h γ σ ^ 21 ^ 21 σ ^ 11 + 2 ^ 12 σ ^ 21 + ^ 03 σ ^ 22
For R ( t ) , we have:
ϕ γ , β = e h R ( t ) , ϕ 1 = ln Z 11 t ( β ) Z 11 t ( β ) γ h e h R ( t ) , ϕ 2 = 2 h γ N 12 t ( β ) β 2 t Z 11 t ( β ) γ 1 e h R ( t ) , ϕ 11 = ln Z 11 t ( β ) 2 Z 11 t ( β ) γ h Z 11 t ( β ) γ 1 h e h R ( t ) , ϕ 12 = ϕ 21 = 2 h W 12 t ( β ) β 2 t Z 11 t ( β ) γ γ h Z 11 t ( β ) γ 1 ln Z 11 t ( β ) + 1 e h R ( t ) , ϕ 22 = 2 h γ W 12 t ( β ) β 4 t 2 Z 11 t ( β ) γ Z 22 t ( β ) + 2 γ W 12 t ( β ) h Z 11 t ( β ) γ 1 2 β t e h R ( t ) .
For H(t):
ϕ γ , β = e h H ( t ) , ϕ 1 = 2 h β t 2 W 12 t ( β ) e h H ( t ) , ϕ 2 = 2 h γ β 2 t 2 W 12 t ( β ) Z 22 t ( β ) β t 1 e h H ( t ) , ϕ 11 = 2 h β t 2 W 12 t ( β ) 2 e h H ( t ) , ϕ 12 = ϕ 21 = 2 h β 2 t 2 W 12 t ( β ) 1 2 W 22 t ( β ) β t 2 h γ β t 2 W 12 t ( β ) W 22 t ( β ) 1 β t + 1 + 1 e h H ( t ) , ϕ 22 = 2 h γ β 3 t 2 W 12 t ( β ) 1 β 2 t 2 8 W 22 t ( β ) 2 8 W 22 t ( β ) W 12 t ( β ) + 4 β t 4 W 22 t ( β ) + W 12 t ( β ) + 2 h γ β t 2 W 12 t ( β ) 2 W 22 t ( β ) 1 β t + 1 2 2 e h H ( t ) .
Thus, the Lindley approximation of reliability function R ( t ) under LLF is:
R ^ ( t ) L L F = 1 h ln R ^ ( t ) + 1 / 2 σ ^ 11 ϕ ^ 11 + 2 ϕ ^ 1 ϱ 1 + σ ^ 12 ϕ ^ 12 + 2 ϕ ^ 1 ϱ 2 + σ ^ 21 ϕ ^ 21 + 2 ϕ ^ 2 ϱ 1 + σ ^ 22 ϕ ^ 22 + 2 ϕ ^ 2 ϱ 2 + ^ 30 σ ^ 11 + 2 ^ 21 σ ^ 12 + ^ 12 σ ^ 22 ϕ ^ 1 σ ^ 11 + ϕ ^ 2 σ ^ 12 + ^ 21 σ ^ 11 + 2 ^ 12 σ ^ 21 + ^ 03 σ ^ 22 ϕ ^ 1 σ ^ 21 + ϕ ^ 2 σ ^ 22
the β ^ L L F and H ^ ( t ) L L F can be obtain likewise.
Then, under loss function GELF, the Lindley approximation of γ is:
ϕ ( γ , β ) = γ q , ϕ 1 = q γ 1 q , ϕ 11 = q ( q + 1 ) γ 2 q , ϕ 2 = ϕ 12 = ϕ 21 = ϕ 22 = 0 .
γ ^ G E L F = γ q + 1 / 2 σ ^ 11 q ( q + 1 ) γ 2 q 2 q γ 1 q ϱ 1 2 q γ q 1 ϱ 2 σ ^ 12 q γ q 1 σ ^ 11 ^ 30 σ ^ 11 + 2 ^ 21 σ ^ 12 + ^ 12 σ ^ 22 q γ q 1 σ ^ 21 ^ 21 σ ^ 11 + 2 ^ 12 σ ^ 21 + ^ 03 σ ^ 22 1 / q
For R(t), we have:
ϕ γ , β = Z 11 t ( β ) γ q , ϕ 1 = q Z 11 t ( β ) γ q ln Z 11 t ( β ) , ϕ 2 = 2 γ q β 2 t N 12 t ( β ) Z 11 t ( β ) γ q + 1 , ϕ 11 = q 2 Z 11 t ( β ) γ q ln Z 11 t ( β ) 2 , ϕ 12 = ϕ 21 = 2 q β 2 t N 12 t ( β ) Z 11 t ( β ) γ q + 1 γ q ln Z 11 t ( β ) + 1 , ϕ 22 = γ q β 2 t W 11 t ( β ) Z 11 t ( β ) γ q 2 2 Z 11 t ( β ) 2 W 01 t ( β ) β 2 t Z 11 t ( β ) 2 Z 11 t ( β ) γ q + 3 + γ q 1 .
For H(t):
ϕ γ , β = 2 γ β t 2 W 12 t ( β ) q , ϕ 1 = q γ 2 γ β t 2 W 12 t ( β ) q , ϕ 2 = q β 2 γ β t 2 W 12 t ( β ) q Z 22 t ( β ) β t 1 , ϕ 11 = q ( q + 1 ) γ 2 2 γ β t 2 W 12 t ( β ) q , ϕ 12 = ϕ 21 = q β 2 β t 2 W 12 t ( β ) q Z 22 t ( β ) β t 1 q + 1 γ 1 q 1 , ϕ 22 = q 2 γ β t 2 W 12 t ( β ) q q + 1 Z 22 t ( β ) β t 1 2 1 β 4 t 2 8 W 22 t ( β ) 2 + W 02 t ( β ) + 4 β 4 t 4 W 22 t ( β ) 1 2 β 2 .
Thus, the Lindley approximation of reliability function R ( t ) under GELF is:
R ^ ( t ) G E L F = R ^ ( t ) + 1 / 2 σ ^ 11 ϕ ^ 11 + 2 ϕ ^ 1 ϱ 1 + σ ^ 12 ϕ ^ 12 + 2 ϕ ^ 1 ϱ 2 + σ ^ 21 ϕ ^ 21 + 2 ϕ ^ 2 ϱ 1 + σ ^ 22 ϕ ^ 22 + 2 ϕ ^ 2 ϱ 2 + ^ 30 σ ^ 11 + 2 ^ 21 σ ^ 12 + ^ 12 σ ^ 22 ϕ ^ 1 σ ^ 11 + ϕ ^ 2 σ ^ 12 + ^ 21 σ ^ 11 + 2 ^ 12 σ ^ 21 + ^ 03 σ ^ 22 ϕ ^ 1 σ ^ 21 + ϕ ^ 2 σ ^ 22 1 / q
in the same way, β ^ G E L F and H ^ ( t ) G E L F can be obtained easily.
According to the above results, we only need to bring the corresponding parts into the corresponding equation, the required Bayesian estimations of each loss function can be obtained.
To better complete Bayesian estimation, we use the M-H method for interval estimation in the next subsection. Then, the Bayesian credible intervals of parameters are carried out.

3.2. Metropolis-Hastings Method

The M-H algorithm is a simulation algorithm based on MCMC technology, originally proposed by Metropolis and then generalized by Hasting. It is widely used in the field of stochastic process. Two important applications are sampling from given probability distributions, and estimating complex integrals by stochastic simulation. Nassar [21], Kohansal [22] and Panahi [14] generated the samples from Weibull distribution, Kumaraswamy distribution and inverted exponentiated Rayleigh distribution respectively under adaptive Type-II progressive hybrid censoring scheme using M-H algorithm with Gibbs sampler.
M-H algorithm uses the joint posterior density function and a proposal distribution to simulate samples. In addition, it uses the existing sample as the distribution parameter of the candidate sample and has an acceptance function to calculate the probability of deciding whether the candidate sample can be accepted. This may cause invalid samples, but it can make the sample distribution move faster towards the original distribution.
The joint posterior function of γ and β in (15) can be re expressed as:
π ( γ , β | X ) π 1 ( γ | β , X ) × π 2 ( β | γ , X )
where
π 1 ( γ | β , X ) = γ m + a 1 1 exp γ b 1 k i = 1 m R i + 1 ln Z 1 , 1 X ( β ) π 2 ( β | γ , X ) = β m + a 2 1 exp b 2 β i = 1 m 1 β x i + ln x i 1 exp ( 2 β x i )
It is obviously that π 1 ( γ | β , X ) is a gamma density function, thus we can generate the samples of γ easily. However, the conditional posterior density π 2 ( β | γ , X ) cannot be transformed into a well-known distribution through simplification and analysis, so it is hard to get samples by general methods. So we choose to apply the M-H algorithm within Gibbs sampling to generate samples subject to π 1 ( γ | β , x ) and π 2 ( β | γ , X ) .
The steps are arranged in the following:
Step-1: Initialize the values of γ ( 0 ) , β ( 0 ) .
Step-2: Let j = 1
Step-3: Generate γ ( j ) from Gamma a 1 + m , b 1 k i = 1 m ( 1 + R i ) ln ( Z 1 , 1 X ( β ) )
under stage j and the progressive first-failure censoring data with given
censoring scheme.
Step-4: Get β ( j ) from π 2 β ( j 1 ) | γ ( j ) , d a t a using following steps:
Step-4.1: Generate a candidate sample β c from Normal β ( j 1 ) , V a r i a n c e ( β ^ ) .
Step-4.2: Generate a data v from Uniform 0 , 1 .
Step-4.3: Let α = min 1 , π 2 ( β c | γ ( j ) , d a t a ) π 2 ( β ( j 1 ) | γ ( j ) , d a t a ) . Put β ( j ) = β c if v α .
Else, put β ( j ) = β ( j 1 ) .
Step-5: Let j = j + 1 .
Step-6: Do step-3 to step-5 Q times, record the γ ( j ) , β ( j ) , j = 1 , , Q
Then, the Bayesian estimation of γ and λ using M-H method under SELF, LLF, and GELF can be obtained as:
γ ˜ M S E L F = 1 Q B j = B + 1 Q γ ( j ) , β ˜ M S E L F = 1 Q B j = B + 1 Q γ ( j ) γ ˜ M L L F = 1 h ln 1 Q B j = B + 1 Q exp h γ ( j ) , β ˜ M L L F = 1 h ln 1 Q B j = B + 1 Q exp h β ( j ) γ ˜ M G E L F = 1 Q B j = B + 1 Q γ ( j ) q 1 / q , β ˜ M G E L F = 1 Q B j = B + 1 Q β ( j ) q 1 / q
The constant B refers here is the burn-in-stage of Markov Chain which can eliminate the impact of choosing an initial value ( γ ( 0 ) , β ( 0 ) ) while ensuring the convergence of the algorithm.
One can use the algorithm proposed by Albert [23] with R package L e a r n B a y e s to complete the estimation, which is very convenient.

3.3. Bayesian Credible Interval

Here we consider the Bayesian intervals of γ and β constructed by M-H method. Using the results of Section 3.2, let γ ( 1 ) , γ ( 2 ) , , γ ( Q ) and β ( 1 ) , β ( 2 ) , , β ( Q ) represent the order statistics of γ ( j ) and β ( j ) , j = 1 , , Q . The 100 ( 1 α ) % Bayesian credible intervals of parameters using MCMC technique can be constructed as:
γ Q α / 2 , γ Q ( 1 α ) / 2 a n d β Q α / 2 , β Q ( 1 α ) / 2 .

4. Simulation Studies

We mainly analyze the effect of the estimators through a Monte Carlo simulation study in this section. Some examples are presented for illustration. First, we determine the true value of parameters and the combination of censoring parameters ( k , n , m , ) . Then, applying the algorithm presented by [24] and the method of generating progressive first-failure samples mentioned in [25], we can generate the samples of IEHLD under progressive first-failure censoring. All analysis is done through software R.
First, take the parameter values as γ = 0.3 , β = 0.8 , and t = 1.5 for the reliability and hazard functions, then take the hyper-parameters ( a 1 , b 1 , a 2 , b 2 ) of the prior distributions G 1 ( γ ) and G 2 ( β ) as (1.06, 3.6, 16, 20). For the sake of comparing the effects of parameter values, the parameter values are changed to γ = 0.3 and β = 1.5 for MLE. While for Bayesian estimation, the hyper-parameters ( a 1 , b 1 , a 2 , b 2 ) are changed to (0, 0, 0, 0) for noninformative estimates. It should be noted that the expectation of prior distribution should be equal to the parameter value which means that a 1 / b 1 = γ and a 2 / b 2 = β . For the censoring parameters, we choose 3 and 5 for k, and determine two sets of combination for n and m say n=30, m=15, 20, 30; n = 50 , m=25, 30, 50 with different R i .
For convenience, when expressing different censoring schemes, the ( 1 * 5 ) represents (1, 1, 1, 1, 1) and ((1, 0)*3) represents (1, 0, 1, 0, 1, 0).
(1) The MLEs are tabulated in Table 1 and Table 2, These tables show:
  • When k and n are fixed but m increases, the M S E s of γ , β , R ( t ) and H ( t ) decrease.
  • When k is fixed but n increases, the M S E s decrease.
  • When n and m are fixed but k increases, the M S E s decrease.
  • When γ is fixed but β increases, the M S E s increase.
(2) The Bayesian estimations using Lindley approximation method under SELF, LLF and GELF are tabulated in Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9 and Table 10. While under LLF, we choose h = 0.5 , 0.5 and 1. While under GELF, we consider q = 0.5 , 0.5 and 1. The tables show that:
  • When k and n are fixed but m increases, the M S E s of γ , β , R ( t ) and H ( t ) decrease.
  • When k is fixed but n increases, the M S E s decrease slightly.
  • When n and m are fixed but k increases, the M S E s have no obvious trend on the whole.
  • The M S E s when using noninformative priors are bigger than using the informative priors under SELF.
  • While under LLF, h = 1 is the best mode with the smallest M S E s, and h = 0.5 is a little bit worse relatively.
  • While under GELF, there is no significant difference in M S E s among the three modes, the estimation effect seems better when q = 0.5 .
  • Among the three loss functions, there is little difference between the M S E s under LLF and GELF, the estimation effect of GELF is slightly better, while SELF is the worst of the three.
(3) The Bayesian estimations using M-H method under SELF, LLF and GELF are tabulated in Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17 and Table 18. While under LLF, we choose h = 0.5 , 0.5 and 1. While under GELF, we consider q = 0.5 , 0.5 and 1. The tables show that:
  • When k and n are fixed but m increases, the M S E s of γ , β , R ( t ) and H ( t ) decrease.
  • When k is fixed but n increases, the M S E s decrease.
  • When n and m are fixed but k increases, the M S E s incraese.
  • The M S E s when using noninformative priors are bigger than using the informative priors.
  • While under LLF, h = 1 is the best mode with the smallest M S E s, and the mode h = 0.5 has the biggest M S E s among the three.
  • While under GELF, the estimation effect when q = 1 is a little bit better than q = 0.5 , and the mode q = 0.5 is a little bit worse relatively.
  • Among the three loss functions, the M S E s under SELF are smallest on the whole, while the M S E s under GELF are a little bit bigger than under LLF.
(4) Between the Bayesian estimation methods in this paper, the estimation effect of Lindley approximation method seems a little better than M-H method overall. Between the interval estimations in this paper, the MLE performs a little better than M-H method as a whole. In Table 19 and Table 20, the Bayesian credible intervals and asymptotic confidence intervals of parameters are presented in the form of the average length and the coverage probability.
Please note that the E V and M S E in the table represent the estimated value and the mean square error between the estimated value and the real value respectively.

5. Practical Data Analysis

We mainly apply the practical data sets prestented in Nichols and Padgett [26] for analysis and illustration in this section. The data reports the observations of tensile strength of 100 carbon fibers, which are tabulated in Table 21.
First, we fit IEHLD and the following five reliability models to the data to compare the fitness:
E x p o n e n t i a l : f ( x ; θ ) = θ exp θ x H L D : f ( x ; θ ) = 2 exp x / θ θ 1 + exp x / θ 2 W e i b u l l : f ( x ; γ , β ) = γ β x β 1 exp γ x β I W D : f ( x ; γ , β ) = γ β exp β x γ x γ 1 G I R D : f ( x ; γ , β ) = 2 γ β 2 x 3 exp 1 β 2 x 2 1 exp 1 β 2 x 2 γ 1
Among them, the Weibull distribution is the original model of the practical data we use, and the IWD and GIRD are two similarly shaped hazard models with IEHLD. The Q-Q plot of fitting these models are shown in Figure 2 for illustration. Then, we use Bayesian information criterion (BIC), Akaike information criterion (AIC), and Kolmogorov–Smirnov (KS) test statistics to present the numerical results based on the MLE. The results are tabulated in Table 22. It can be seen that IEHLD has relatively good fitting degree.
Next, randomly group the data into 50 groups with 2 units in each group. That means n = 50 , k = 2 . After that, choose the minimum value in each group, using schemes 1 , 2 and 3 when m = 35 to generate the progressive first-failure samples. The grouped data are tabulated in Table 23 and the minimum values in each group are displayed as follows: 0.39, 0.81, 0.85, 0.98, 1.08, 1.12, 1.17, 1.18, 1.22, 1.25, 1.36, 1.41, 1.47, 1.57, 1.57, 1.59, 1.59, 1.61, 1.69, 1.71, 1.73, 1.80, 1.84, 1.84, 1.89, 1.92, 2.00, 2.03, 2.03, 2.12, 2.17, 2.17, 2.17, 2.41, 2.43, 2.48, 2.53, 2.55, 2.59, 2.67, 2.75, 2.76, 2.81, 2.82, 2.93, 2.95, 2.97, 2.97, 3.15, 3.19.
Then, using the generated progressive first-failure censored data listed in Table 24, the MLEs and Bayesian estimations of γ , β , H ( t ) and R ( t ) are conducted. Simultaneously, the Bayesian credible intervals and asymptotic confidence intervals of parameters are also presented. Take t = 10 , the corresponding results are listed in Table 25.

6. Optimal Censoring Mode

In this part, the optimal censoring mode of the progressive first-failure censoring schemes presented before is considered. Here we use four criteria mentioned in [27] to evaluate the optimal censoring scheme.
1 : Minimize the determinant of the corresponding I 1 ( θ ^ ) , say d e t ( I 1 ( θ ^ ) ) .
2 : Minimize the trace of the corresponding I 1 ( θ ^ ) , say t r a c e ( I 1 ( θ ^ ) ) .
3 : Minimize V a r [ ln α ^ p ] , the variance of the logarithmic of the MLE of p-th quantile α p . In IEHLD, α p = 1 / β ln 1 1 p 1 / γ 1 + 1 p 1 / γ , V a r [ ln α ^ p ] = ln α ^ p T V a r ( θ ^ ) ln α ^ p . Please note that ln α ^ p T is the gradients of ln α p when γ and β are obtained as the MLEs γ ^ and β ^ . We take p = 0.05 and p = 0.95 for this criterion.
4 : Minimize the integral 0 1 V a r [ ln α ^ p ] ( p ) d p with the weight function ( p ) = 1 .
The corresponding results are tabulated in Table 26. The minimum value under each criterion is bold for a clearer expression. Through the table we can see, while using criterion [ 1 ] , 2 is the best scheme, but when using the other three criteria, 3 is the best scheme.

7. Concluding Remarks

We mainly propose the MLEs and Bayesian estimations of the parameters and the reliability and failure functions of IEHLD using progressive first-failure censored samples. For MLE, we use two sets of parameter values to compare the difference, the asymptotic intervals of parameters are presented at the same time. For Bayesian estimation, Lindley approximation method and Metropolis-Hastings method are conducted as point and interval estimation under three loss functions say GELF, LLF and SELF. The Bayesian intervals of parameters are also obtained. Then we use practical data sets to illustrate the effect of different models and compare different estimation methods. Finally, using four criteria, the optimal censoring plan of the progressive first-failure censoring schemes is discussed.
There are still a lot to be done in the study of censoring mode. In order to improve the experimental efficiency, it is very important to optimize the censoring mode. Now, many new censoring modes have been put forward such as generalized Type-II progressive hybrid censoring, adaptive progressive Type-II censoring. One can also combine existing censoring modes to achieve better results.

Author Contributions

Investigation, F.Z.; Supervision, W.G. All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by Project 201910004093 which was supported by National Training Program of Innovation and Entrepreneurship for Undergraduates.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Fujii, S. Designing an optimal life test with type I censoring. Nav. Res. Logist. 2006, 38, 23–32. [Google Scholar]
  2. Kateri, M.; Balakrishnan, N. Inference for a Simple Step-Stress Model With Type-II Censoring, and Weibull Distributed Lifetimes. IEEE Trans. Reliab. 2008, 57, 616–626. [Google Scholar] [CrossRef]
  3. Balakrishnan, N.; Aggarwala, R. Progressive Censoring: Theory, Methods and Applications; Birkhäuser: Boston, MA, USA, 2000. [Google Scholar]
  4. Wu, S.J.; Ku, C. On estimation based on progressive first-failure-censored sampling. Comput. Stat. Data Anal. 2009, 53, 3659–3670. [Google Scholar] [CrossRef]
  5. Balakrishnan, N.; Wong, K. Approximate MLEs for the location and scale parameters of the half-logistic distribution with type-II right-censoring. IEEE Trans. Reliab. 1991, 40, 140–145. [Google Scholar] [CrossRef]
  6. Balakrishnan, N.; Asgharzadeh, A. Inference for the Scaled Half-Logistic Distribution Based on Progressively Type-II Censored Samples. Commun. Stat. Theory Methods 2005, 34, 73–87. [Google Scholar] [CrossRef]
  7. Adatia, A. Estimation of parameters of the half-logistic distribution using generalized ranked set sampling. Comput. Stat. Data Anal. 2000, 33, 1–13. [Google Scholar] [CrossRef]
  8. Asgharzadeh, A.; Rezaie, R.; Abdi, M. Comparisons of Methods of Estimation for the Half-Logistic Distribution. Selçuk J. Appl. Math. 2011, 93–108. Available online: http://sjam.selcuk.edu.tr/sjam/article/view/294 (accessed on 1 April 2020).
  9. Jung-In, S.; Kang, S.B. Entropy Estimation of Generalized Half-Logistic Distribution (GHLD) Based on Type-II Censored Samples. Entropy 2013, 16, 443–454. [Google Scholar] [CrossRef] [Green Version]
  10. Rastogi, M.K.; Tripathi, Y.M. Parameter and reliability estimation for an exponentiated half-logistic distribution under progressive type II censoring. J. Stat. Comput. Simul. 2014, 84, 1711–1727. [Google Scholar] [CrossRef]
  11. Gui, W. Exponentiated Half Logistic Distribution: Different Estimation Methods and Joint Confidence Regions. Commun. Stat. Simul. Comput. 2015, 46, 4600–4617. [Google Scholar] [CrossRef]
  12. Shirke, D.T. Inference for the parameters of generalized inverted family of distributions. Probstat Forum 2013, 6, 18–28. [Google Scholar]
  13. Dey, S. Inverted exponential distribution as a life distribution model from a Bayesian viewpoint. Data Ence J. 2007, 6, 107–113. [Google Scholar] [CrossRef]
  14. Panahi, H.; Moradi, N. Estimation of the inverted exponentiated Rayleigh Distribution Based on Adaptive Type II Progressive Hybrid Censored Sample. J. Comput. Appl. Math. 2020, 364, 112345. [Google Scholar] [CrossRef]
  15. Lee, K.; Cho, Y. Bayesian and maximum likelihood estimations of the inverted exponentiated half logistic distribution under progressive Type II censoring. J. Appl. Stat. 2016, 44, 811–832. [Google Scholar] [CrossRef]
  16. Klebanov, L.B. “Universal” loss functions and unbiased estimates. Doklady Akademii Nauk SSSR 1972, 203, 1249–1251. [Google Scholar]
  17. Klebanov, L.; Rachev, S.; Fabozzi, F. Robust and Non-Robust Models in Statistics; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2009. [Google Scholar]
  18. Zellner, A. Bayesian Estimation and Prediction Using Asymmetric Loss Functions. Publ. Am. Stat. Assoc. 1986, 81, 446–451. [Google Scholar] [CrossRef]
  19. Calabria, R.; Pulcini, G. An engineering approach to Bayes estimation for the Weibull distribution. Microelectron. Reliab. 1994, 34, 789–802. [Google Scholar] [CrossRef]
  20. Lindley, D.V. Approximate Bayesian methods. Trabajos de EstadíStica y de InvestigacióN Operativa 1980, 31, 223–245. [Google Scholar] [CrossRef]
  21. Nassar, M.; Abo-Kasem, O.E.; Zhang, C.; Dey, S. Analysis of Weibull Distribution Under Adaptive Type-II Progressive Hybrid Censoring Scheme. J. Indian Soc. Probab. Stat. 2018, 19, 25–65. [Google Scholar] [CrossRef]
  22. Kohansal, A.; Bakouch, H.S. Estimation procedures for Kumaraswamy distribution parameters under adaptive type-II hybrid progressive censoring. Commun. Stat. Simul. Comput. 2019, 1–20. [Google Scholar] [CrossRef]
  23. Albert, J. Bayesian Computation with R; Springer: New York, NY, USA, 2007; pp. XII, 300. [Google Scholar]
  24. Balakrishnan, N.; Sandhu, R.A. A Simple Simulational Algorithm for Generating Progressive Type-II Censored Samples. Am. Stat. 1995, 49, 229–230. [Google Scholar]
  25. Balakrishnan, N.; Cramer, E. Progressive Censoring: Data and Models; Statistics for Industry and Technology; Birkhäuser: New York, NY, USA, 2014. [Google Scholar]
  26. Nichols, M.; Padgett, W.J. A Bootstrap Control Chart for Weibull Percentiles. Qual. Reliab. Eng. Int. 2006, 22, 141–151. [Google Scholar] [CrossRef]
  27. Dube, M.; Krishna, H.; Garg, R. Generalized inverted exponential distribution under progressive first-failure censoring. J. Stat. Comput. Simul. 2016, 86, 1095–1114. [Google Scholar] [CrossRef]
Figure 1. The graph of Hazard function of IEHLD.
Figure 1. The graph of Hazard function of IEHLD.
Mathematics 08 00708 g001
Figure 2. Q-Q plots of fitting different models to the practical data.
Figure 2. Q-Q plots of fitting different models to the practical data.
Mathematics 08 00708 g002
Table 1. Maximum likelihood estimates and MSEs of parameters and reliability and hazard functions when γ = 0.3 , β = 1.5 , t = 1.5 , R ( t ) = 0.6337 , H ( t ) = 0.1936 , N = 1000.
Table 1. Maximum likelihood estimates and MSEs of parameters and reliability and hazard functions when γ = 0.3 , β = 1.5 , t = 1.5 , R ( t ) = 0.6337 , H ( t ) = 0.1936 , N = 1000.
knmScheme γ ^ ML β ^ ML R ^ ( t ) ML H ^ ( t ) ML
EVMSEEVMSEEVMSEEVMSE
33015(15,0*14)0.36190.03421.46970.14030.60820.00910.23040.0124
(0*6,10,5,0*7)0.37630.04131.45310.11860.60170.01030.23900.0149
((2,0)*7,1)0.38400.05931.44510.12850.60130.01100.24300.0194
20(10,0*19)0.34020.01351.47340.11890.61720.00530.21730.0050
((2,0)*2,(1,0)*6,0*4)0.34800.01981.46220.11460.61530.00620.22170.0071
((0*3,1*4)*2,1,1,0*4)0.35430.02081.44770.10450.61140.00640.22570.0075
30(0*30)0.31840.00641.47460.07730.63030.00290.20400.0024
5025(25,0*24)0.33220.00901.47190.08500.61970.00400.21270.0034
(0*8,2,3*7,2,0*8)0.34050.01661.47770.07580.61580.00570.21790.0063
(3*6,0*12,1*7)0.34180.01411.47100.08160.61430.00500.21870.0053
30(20,0*29)0.32240.00751.48540.07520.62540.00330.20670.0028
((2,0,0)*10)0.33500.01041.47370.06840.61690.00400.21470.0039
(0*29,20)0.34360.01661.47340.08070.61410.00510.21970.0061
50(0*50)0.31540.00371.48110.05380.62840.00180.20260.0014
53015(15,0*14)0.37090.04521.46580.10990.60440.01020.23590.0163
(0*6,10,5,0*7)0.40120.06471.44650.10420.58830.01430.25470.0235
((2,0)*7,1)0.44290.19221.42730.11700.57770.01880.27850.0607
20(10,0*19)0.34820.01961.46940.08360.61200.00670.22260.0073
((2,0)*2,(1,0)*6,0*4)0.36470.02981.44800.08720.60490.00840.23250.0110
((0*3,1*4)*2,1,1,0*4)0.36440.03241.45890.08740.60500.00890.23250.0121
30(0*30)0.33080.00991.47900.06940.62030.00380.21190.0037
5025(25,0*24)0.34010.01471.46830.07050.61580.00550.21770.0056
(0*8,2,3*7,2,0*8)0.34910.02221.48120.06150.60980.00750.22350.0084
(3*6,0*12,1*7)0.34740.01881.46800.06490.61150.00620.22220.0070
30(20,0*29)0.32800.01001.48330.06710.62210.00390.21030.0038
((2,0,0)*10)0.34500.01451.46340.05210.61030.00540.22110.0055
(0*29,20)0.36090.02511.45300.07150.60530.00760.23050.0094
50(0*50)0.31270.00451.48720.041740.63020.00210.20100.0017
Table 2. Maximum likelihood estimates and MSEs of parameters and reliability and hazard functions when γ = 0.3 , β = 0.8 , t = 1.5 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
Table 2. Maximum likelihood estimates and MSEs of parameters and reliability and hazard functions when γ = 0.3 , β = 0.8 , t = 1.5 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
knmScheme γ ^ ML β ^ ML R ^ ( t ) ML H ^ ( t ) ML
EVMSEEVMSEEVMSEEVMSE
33015(15,0*14)0.35210.02600.77660.03770.74800.00380.20060.0057
(0*6,10,5,0*7)0.38320.05310.77290.03880.73900.00510.21520.0111
((2,0)*7,1)0.38990.05760.77080.03410.73510.00500.21900.0121
20(10,0*19)0.34100.01690.78490.03260.74800.00290.19650.0040
((2,0)*2,(1,0)*6,0*4)0.34630.02130.77440.02780.74840.00270.19850.0044
((0*3,1*4)*2,1,1,0*4)0.35170.02150.78450.02890.74340.00310.20210.0050
30(0*30)0.32500.00850.78610.02530.63950.00340.18850.0021
5025(25,0*24)0.32660.00890.79880.02500.74950.00210.19050.0023
(0*8,2,3*7,2,0*8)0.33840.01200.77520.03000.75040.00240.19490.0028
(3*6,0*12,1*7)0.33430.01230.78320.02070.74920.00220.19420.0032
30(20,0*29)0.32530.00870.77980.02200.64070.00280.18910.0023
((2,0,0)*10)0.32960.00940.77790.01950.64090.00270.19130.0023
(0*29,20)0.34030.01490.78250.02220.64000.00300.19670.0035
50(0*50)0.31350.00380.79380.01340.63350.00170.18440.0011
53015(15,0*14)0.37350.04950.78450.03180.73660.00510.21270.0104
(0*6,10,5,0*7)0.40060.06080.76400.02890.72920.00600.22620.0137
((2,0)*7,1)0.43810.12880.76150.03180.72080.00920.24340.0278
20(10,0*19)0.35050.02020.77740.02510.74420.00320.20210.0051
((2,0)*2,(1,0)*6,0*4)0.36040.02370.77180.02420.74090.00350.20710.0059
((0*3,1*4)*2,1,1,0*4)0.37290.05080.76980.02590.73920.00400.21200.0100
30(0*30)0.32640.00930.78780.01970.63730.00250.19020.0024
5025(25,0*24)0.33770.01290.78900.01890.74510.00230.19680.0034
(0*8,2,3*7,2,0*8)0.34490.01840.77830.02260.74680.00260.19890.0044
(3*6,0*12,1*7)0.35070.02090.78570.01990.74140.00320.20320.0054
30(20,0*29)0.33030.01010.78760.01720.63680.00230.19260.0026
((2,0,0)*10)0.35020.01990.77730.01690.64040.00230.20280.0049
(0*29,20)0.34900.02080.78340.01850.63870.00250.20200.0053
50(0*50)0.32120.00480.78410.01200.63660.00160.18840.0013
Table 3. Lindley approximation values and MSEs of parameters and reliability and hazard functions under SELF using noninformative priors when γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 0 , b 1 = 0 , a 2 = 0 , b 2 = 0 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
Table 3. Lindley approximation values and MSEs of parameters and reliability and hazard functions under SELF using noninformative priors when γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 0 , b 1 = 0 , a 2 = 0 , b 2 = 0 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
knmScheme γ ^ LB β ^ LB R ^ ( t ) LB H ^ ( t ) LB
EVMSEEVMSEEVMSEEVMSE
33020(10,0*19)0.33180.01260.83740.03710.74960.00250.20440.0038
((2,0)*2,(1,0)*6,0*4)0.35020.02330.82610.03900.74570.00300.21240.0062
((0*3,1*4)*2,1,1,0*4)0.34720.02430.84450.04020.74350.00280.21160.0064
30(0*30)0.32170.00700.82980.02940.75180.00170.19700.0022
5025(25,0*24)0.32660.00960.81270.02440.75250.00270.19900.0031
(0*8,2,3*7,2,0*8)0.34550.01610.81870.02450.74320.00230.20820.0047
(3*6,0*12,1*7)0.33290.01350.82570.02680.74890.00220.20130.0039
30(20,0*29)0.32120.00700.82500.02440.75120.00180.19590.0022
((2,0,0)*10)0.32880.00960.82620.02290.74850.00170.19930.0028
(0*29,20)0.33790.01490.82160.02500.74790.00200.20400.0043
50(0*50)0.30950.00330.81700.01630.75560.00100.18760.0010
53020(10,0*19)0.35500.02830.82180.03030.74200.00310.21430.0074
((2,0)*2,(1,0)*6,0*4)0.36200.03200.82720.03170.73920.00350.21750.0084
((0*3,1*4)*2,1,1,0*4)0.36900.03740.82010.02950.73880.00390.22080.0101
30(0*30)0.32710.00930.82980.02210.74760.00190.19880.0029
5025(25,0*24)0.33850.01240.81150.02110.74650.00200.20410.0037
(0*8,2,3*7,2,0*8)0.37370.03310.80750.02120.73470.00380.22230.0093
(3*6,0*12,1*7)0.39540.06900.82550.02850.73120.00520.23350.0173
30(20,0*29)0.32580.00870.82020.01880.74950.00170.19700.0027
((2,0,0)*10)0.33990.01600.81860.01940.74520.00230.20390.0046
(0*29,20)0.37290.03950.81740.02550.73600.00360.22130.0105
50(0*50)0.31570.00440.81590.01170.75110.00100.19040.0013
Table 4. Lindley approximation values and MSEs of parameters and reliability and hazard functions under SELF when γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
Table 4. Lindley approximation values and MSEs of parameters and reliability and hazard functions under SELF when γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
knmScheme γ ^ LB β ^ LB R ^ ( t ) LB H ^ ( t ) LB
EVMSEEVMSEEVMSEEVMSE
33020(10,0*19)0.30890.00400.80280.00550.74950.00210.19910.0020
((2,0)*2,(1,0)*6,0*4)0.30760.00400.81220.00670.74810.00220.19790.0020
((0*3,1*4)*2,1,1,0*4)0.30990.00560.81970.00440.74320.00240.20080.0022
30(0*30)0.30960.00320.81320.00530.75120.00140.19420.0014
5025(25,0*24)0.31190.00390.81050.00400.75090.00180.19480.0017
(0*8,2,3*7,2,0*8)0.31500.00410.81020.00510.74910.00170.19570.0018
(3*6,0*12,1*7)0.31120.00410.81610.00540.74930.00190.19450.0018
30(20,0*29)0.31510.00390.81250.00470.74880.00170.19540.0016
((2,0,0)*10)0.31060.00340.81710.00550.75100.00140.19220.0014
(0*29,20)0.30910.00310.81870.00540.75030.00140.19330.0014
50(0*50)0.30400.00230.81480.00630.75160.00090.18940.0009
53020(10,0*19)0.30910.00390.81520.00490.74860.00200.19600.0018
((2,0)*2,(1,0)*6,0*4)0.30180.00590.81780.00470.74800.00190.19380.0017
((0*3,1*4)*2,1,1,0*4)0.29070.03700.81740.00490.75130.00180.18990.0024
30(0*30)0.31260.00340.81340.00560.75050.00140.19330.0014
5025(25,0*24)0.31610.00440.81470.00480.74840.00180.19530.0018
(0*8,2,3*7,2,0*8)0.30320.02640.81530.00540.75030.00160.18950.0053
(3*6,0*12,1*7)0.31090.00580.81660.00510.74960.00160.19290.0018
30(20,0*29)0.31880.00450.81310.00600.74740.00160.19560.0018
((2,0,0)*10)0.31460.00540.81630.00580.74810.00140.19370.0018
(0*29,20)0.30200.00800.81760.00470.75050.00120.19040.0017
50(0*50)0.30970.00270.81590.00610.75200.00090.18790.0009
Table 5. Lindley approximation values and MSEs of parameters and reliability and hazard functions under LLF when h = 0.5 , γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
Table 5. Lindley approximation values and MSEs of parameters and reliability and hazard functions under LLF when h = 0.5 , γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
knmScheme γ ^ LB β ^ LB R ^ ( t ) LB H ^ ( t ) LB
EVMSEEVMSEEVMSEEVMSE
33020(10,0*19)0.31220.00430.80080.01830.75640.00190.20710.0029
((2,0)*2,(1,0)*6,0*4)0.30600.00570.80880.01120.75950.00180.20660.0029
((0*3,1*4)*2,1,1,0*4)0.30250.01040.81400.02120.75890.00190.20840.0030
30(0*30)0.31150.00330.81650.00610.75660.00130.19850.0018
5025(25,0*24)0.31570.00410.81030.00550.75650.00160.20100.0022
(0*8,2,3*7,2,0*8)0.31590.00390.81810.00560.75800.00140.20450.0024
(3*6,0*12,1*7)0.31680.00410.81870.00590.75580.00140.20470.0025
30(20,0*29)0.31140.00340.81650.00530.75730.00140.19580.0016
((2,0,0)*10)0.31610.00470.81790.00610.75550.00140.20190.0022
(0*29,20)0.31380.00330.82520.00600.75620.00120.20570.0024
50(0*50)0.30960.00240.80900.00620.75790.00090.19040.0010
53020(10,0*19)0.30620.01070.81540.00650.76120.00170.20630.0028
((2,0)*2,(1,0)*6,0*4)0.30060.02060.81730.00540.76290.00180.20390.0146
((0*3,1*4)*2,1,1,0*4)0.29850.00960.82000.00540.76430.00150.20820.0027
30(0*30)0.31530.00370.81540.00650.75710.00120.20130.0021
5025(25,0*24)0.31710.00560.81260.00660.75700.00160.20380.0027
(0*8,2,3*7,2,0*8)0.30680.01960.81800.00560.76060.00140.20660.0030
(3*6,0*12,1*7)0.31320.00430.82020.00570.76120.00130.20430.0026
30(20,0*29)0.31670.00400.81380.00580.75720.00130.19950.0020
((2,0,0)*10)0.31630.00410.81640.00590.75890.00110.20330.0024
(0*29,20)0.30830.00640.81940.00500.76290.00100.20860.0027
50(0*50)0.31200.00300.81580.00650.75600.00080.19210.0012
Table 6. Lindley approximation values and MSEs of parameters and reliability and hazard functions under LLF when h = 0.5 , γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
Table 6. Lindley approximation values and MSEs of parameters and reliability and hazard functions under LLF when h = 0.5 , γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
knmScheme γ ^ LB β ^ LB R ^ ( t ) LB H ^ ( t ) LB
EVMSEEVMSEEVMSEEVMSE
33020(10,0*19)0.31070.00420.80700.00450.75210.00210.20460.0027
((2,0)*2,(1,0)*6,0*4)0.31070.00420.80700.00450.75210.00210.20460.0027
((0*3,1*4)*2,1,1,0*4)0.30330.00340.81390.00440.75550.00170.20480.0025
30(0*30)0.30560.00300.81090.00450.75620.00140.19460.0015
5025(25,0*24)0.31300.00400.80760.00420.75270.00180.19940.0021
(0*8,2,3*7,2,0*8)0.31660.00410.81160.00470.75160.00160.20550.0026
(3*6,0*12,1*7)0.31510.00430.81290.00490.75180.00170.20330.0025
30(20,0*29)0.31130.00360.80960.00480.75360.00150.19580.0017
((2,0,0)*10)0.31120.00340.81190.00580.75450.00120.19830.0019
(0*29,20)0.30650.00310.82090.00460.75570.00130.19980.0020
50(0*50)0.30770.00220.80870.00570.755270.00080.18950.0009
53020(10,0*19)0.30970.00410.81280.00420.75420.00190.20590.0028
((2,0)*2,(1,0)*6,0*4)0.30360.00490.81550.00420.75710.00200.20560.0029
((0*3,1*4)*2,1,1,0*4)0.29720.00590.81550.00420.76100.00220.20360.0030
30(0*30)0.31010.00330.81560.00550.75430.00130.19780.0018
5025(25,0*24)0.31420.00400.81050.00470.75330.00160.20100.0023
(0*8,2,3*7,2,0*8)0.30850.00380.81520.00500.75750.00140.20200.0023
(3*6,0*12,1*7)0.31020.00410.81150.00500.75680.00150.20310.0027
30(20,0*29)0.31350.00390.80680.00530.75450.00140.19790.0019
((2,0,0)*10)0.31500.00370.81580.00500.75270.00130.20190.0022
(0*29,20)0.30750.00360.81400.00450.75810.00120.20590.0025
50(0*50)0.30830.00270.80730.00540.75610.00080.19000.0011
Table 7. Lindley approximation values and MSEs of parameters and reliability and hazard functions under LLF when h = 1 , γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
Table 7. Lindley approximation values and MSEs of parameters and reliability and hazard functions under LLF when h = 1 , γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
knmScheme γ ^ LB β ^ LB R ^ ( t ) LB H ^ ( t ) LB
EVMSEEVMSEEVMSEEVMSE
33020(10,0*19)0.30720.00380.80090.00320.75260.00200.20250.0024
((2,0)*2,(1,0)*6,0*4)0.30940.00380.80850.00310.75030.00190.20610.0027
((0*3,1*4)*2,1,1,0*4)0.30320.00360.81020.00330.75540.00410.20320.0026
30(0*30)0.30630.00280.80840.00350.75370.00140.19500.0014
5025(25,0*24)0.31320.00410.80010.00390.75150.00180.19950.0021
(0*8,2,3*7,2,0*8)0.31100.00370.80590.00460.75320.00150.20180.0023
(3*6,0*12,1*7)0.30810.00360.80620.00450.75450.00150.19870.0021
30(20,0*29)0.31000.00360.80590.00420.75250.00160.19520.0017
((2,0,0)*10)0.31000.00360.80700.00490.75350.00140.19760.0019
(0*29,20)0.30540.00290.81410.00500.75450.00130.19950.0019
50(0*50)0.30680.00220.80780.00580.75410.00090.18910.0009
53020(10,0*19)0.30490.00350.81360.00310.75370.00180.20140.0023
((2,0)*2,(1,0)*6,0*4)0.30520.00350.81430.00330.75400.00180.20460.0026
((0*3,1*4)*2,1,1,0*4)0.30260.00290.81580.00330.75550.00180.20440.0022
30(0*30)0.30810.00330.81240.00490.75330.00140.19640.0018
5025(25,0*24)0.31210.00380.80640.00480.75220.00150.19950.0021
(0*8,2,3*7,2,0*8)0.30750.00370.81390.00490.75520.00170.20060.0023
(3*6,0*12,1*7)0.31150.00360.80430.00460.75530.00220.20280.0025
30(20,0*29)0.30980.00370.80730.00530.75390.00140.19570.0018
((2,0,0)*10)0.31380.00390.80670.00510.75230.00130.20140.0023
(0*29,20)0.30570.00290.81360.00390.75660.00170.20300.0023
50(0*50)0.31120.00280.80530.00570.75260.00090.19190.0011
Table 8. Lindley approximation values and MSEs of parameters and reliability and hazard functions under GELF when q = 0.5 , γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
Table 8. Lindley approximation values and MSEs of parameters and reliability and hazard functions under GELF when q = 0.5 , γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
knmScheme γ ^ LB β ^ LB R ^ ( t ) LB H ^ ( t ) LB
EVMSEEVMSEEVMSEEVMSE
33020(10,0*19)0.30640.00400.80710.00330.75100.00210.18200.0014
((2,0)*2,(1,0)*6,0*4)0.30430.00400.81170.00380.75090.00210.18130.0014
((0*3,1*4)*2,1,1,0*4)0.30180.00340.81550.00410.75160.00200.18020.0012
30(0*30)0.30410.00290.81160.00390.75390.00140.18000.0010
5025(25,0*24)0.30780.00370.80560.00390.75300.00180.18180.0013
(0*8,2,3*7,2,0*8)0.30740.00370.80370.00460.75170.00190.18250.0013
(3*6,0*12,1*7)0.30820.00420.81120.00490.75230.00190.18220.0014
30(20,0*29)0.31030.00340.80240.00470.75290.00140.18290.0011
((2,0,0)*10)0.30740.00350.81380.00510.75260.00140.18170.0011
(0*29,20)0.30820.00330.81380.00480.75140.00150.18250.0011
50(0*50)0.30550.00200.80880.00610.75450.00090.18040.0006
53020(10,0*19)0.30480.00370.81480.00380.75100.00200.18140.0013
((2,0)*2,(1,0)*6,0*4)0.30690.00500.81510.00400.75140.00270.18180.0013
((0*3,1*4)*2,1,1,0*4)0.29850.00350.82160.00360.75350.00190.17810.0012
30(0*30)0.30780.00340.81520.00530.75210.00140.18200.0011
5025(25,0*24)0.31180.00440.81080.00440.75030.00190.18420.0015
(0*8,2,3*7,2,0*8)0.30550.00360.81420.00450.75260.00170.18100.0012
(3*6,0*12,1*7)0.31020.00390.81310.00470.75050.00160.18360.0013
30(20,0*29)0.30840.00360.80960.00500.75330.00140.18200.0012
((2,0,0)*10)0.31130.00370.80900.00520.75160.00130.18380.0012
(0*29,20)0.30450.00290.81520.00410.75380.00130.18040.0010
50(0*50)0.30640.00270.80650.00630.75540.00080.18070.0008
Table 9. Lindley approximation values and MSEs of parameters and reliability and hazard functions under GELF when q = 0.5 , γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
Table 9. Lindley approximation values and MSEs of parameters and reliability and hazard functions under GELF when q = 0.5 , γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
knmScheme γ ^ LB β ^ LB R ^ ( t ) LB H ^ ( t ) LB
EVMSEEVMSEEVMSEEVMSE
33020(10,0*19)0.29970.00410.80120.00220.74950.00240.17810.0015
((2,0)*2,(1,0)*6,0*4)0.29970.00370.80440.00240.74950.00200.17810.0013
((0*3,1*4)*2,1,1,0*4)0.29720.00390.80920.00210.75030.00210.17680.0014
30(0*30)0.30300.00310.80220.00340.74990.00150.17960.0010
5025(25,0*24)0.30360.00360.79730.00340.74950.00190.17980.0012
(0*8,2,3*7,2,0*8)0.30090.00340.80150.00260.75030.00180.17860.0012
(3*6,0*12,1*7)0.30420.00390.80060.00430.74890.00180.18020.0013
30(20,0*29)0.30030.00300.80000.00400.75230.00150.17790.0010
((2,0,0)*10)0.30010.00330.80280.00500.75220.00150.17780.0011
(0*29,20)0.29880.00310.80730.00380.75220.00140.17740.0010
50(0*50)0.30320.00220.80250.00560.75240.00090.17950.0007
53020(10,0*19)0.29570.00380.80580.00300.75270.00220.17570.0013
((2,0)*2,(1,0)*6,0*4)0.29760.00370.80780.00300.75460.01010.17690.0013
((0*3,1*4)*2,1,1,0*4)0.29420.00350.81200.00280.75660.00610.17510.0012
30(0*30)0.30160.00330.80640.00460.75020.00140.17890.0011
5025(25,0*24)0.30120.00390.80430.00420.74990.00170.17870.0013
(0*8,2,3*7,2,0*8)0.29710.00370.80520.00360.75260.00180.17640.0013
(3*6,0*12,1*7)0.30360.00400.80340.00410.74850.00180.18020.0013
30(20,0*29)0.30070.00360.80050.00490.75260.00140.17810.0011
((2,0,0)*10)0.30310.00420.80530.00510.75030.00170.17970.0013
(0*29,20)0.29680.00310.80900.00730.75280.00190.17640.0010
50(0*50)0.30250.00250.80290.00530.75280.00090.17920.0008
Table 10. Lindley approximation values and MSEs of parameters and reliability and hazard functions under GELF when q = 1 , γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
Table 10. Lindley approximation values and MSEs of parameters and reliability and hazard functions under GELF when q = 1 , γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
knmScheme γ ^ LB β ^ LB R ^ ( t ) LB H ^ ( t ) LB
EVMSEEVMSEEVMSEEVMSE
33020(10,0*19)0.29700.00400.79600.00160.74980.00220.17620.0014
((2,0)*2,(1,0)*6,0*4)0.29550.00370.80230.00190.74900.00200.17550.0013
((0*3,1*4)*2,1,1,0*4)0.29180.00390.80620.00170.75120.00200.17350.0013
30(0*30)0.29990.00340.79470.00340.75070.00160.17770.0011
5025(25,0*24)0.30100.00340.79220.00350.74880.00180.17830.0011
(0*8,2,3*7,2,0*8)0.29890.00380.80100.00190.74820.00210.17760.0013
(3*6,0*12,1*7)0.29940.00390.79860.00360.74870.00170.17770.0013
30(20,0*29)0.30260.00330.79030.00450.75000.00160.17900.0011
((2,0,0)*10)0.30150.00370.79570.00440.74940.00150.17870.0012
(0*29,20)0.29500.00320.80760.00360.75020.00150.17570.0010
50(0*50)0.29900.00200.80220.00520.75230.00090.17750.0006
53020(10,0*19)0.29420.00430.80100.00260.75090.00200.17470.0014
((2,0)*2,(1,0)*6,0*4)0.29340.00420.80600.00260.75000.00200.17450.0014
((0*3,1*4)*2,1,1,0*4)0.29580.00400.81180.00340.75060.00340.17600.0013
30(0*30)0.29890.00320.79700.00460.75060.00140.17730.0010
5025(25,0*24)0.29830.00420.79670.00430.75020.00170.17690.0014
(0*8,2,3*7,2,0*8)0.29710.00400.80520.00340.74890.00190.17670.0013
(3*6,0*12,1*7)0.29630.00410.80070.00410.74960.00170.17610.0013
30(20,0*29)0.30140.00400.79480.00510.74980.00170.17860.0013
((2,0,0)*10)0.29720.00400.79490.00480.75220.00140.17620.0013
(0*29,20)0.29570.00360.80270.00350.75440.00410.17570.0011
50(0*50)0.30030.00260.79710.00530.75300.00090.17810.0008
Table 11. Estimation values and MSEs of parameters, reliability and hazard functions using Metropolis-Hastings method and noninformative priors under SELF when γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 0 , b 1 = 0 , a 2 = 0 , b 2 = 0 , R ( t ) = 0 , H ( t ) = 0.1786 , N = 1000.
Table 11. Estimation values and MSEs of parameters, reliability and hazard functions using Metropolis-Hastings method and noninformative priors under SELF when γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 0 , b 1 = 0 , a 2 = 0 , b 2 = 0 , R ( t ) = 0 , H ( t ) = 0.1786 , N = 1000.
knmScheme γ ^ MH β ^ MH R ^ ( t ) MH H ^ ( t ) MH
EVMSEEVMSEEVMSEEVMSE
33020(10,0*19)0.35150.01820.86020.04690.73880.00330.20090.0042
((2,0)*2,(1,0)*6,0*4)0.36700.03920.84600.04290.73870.00300.20630.0062
((0*3,1*4)*2,1,1,0*4)0.36860.02970.84080.04510.73870.00340.20790.0062
30(0*30)0.33060.00860.84170.03400.74760.00190.19080.0020
5025(25,0*24)0.33450.00940.83600.03030.74560.00220.19340.0024
(0*8,2,3*7,2,0*8)0.35500.01870.82470.02670.74070.00240.20360.0044
(3*6,0*12,1*7)0.36170.02140.81550.02800.74000.00240.20600.0047
30(20,0*29)0.32990.00750.82830.02670.74770.00170.19120.0018
((2,0,0)*10)0.34740.01280.81320.02340.74390.00190.19950.0030
(0*29,20)0.35250.01700.81820.02600.74420.00210.20120.0038
50(0*50)0.31850.00400.81830.01820.75170.00110.18600.0010
53020(10,0*19)0.37910.04070.82260.03380.73590.00380.21350.0083
((2,0)*2,(1,0)*6,0*4)0.38170.03770.82480.03190.73440.00390.21540.0083
((0*3,1*4)*2,1,1,0*4)0.39920.05520.82300.03400.73030.00460.22330.0115
30(0*30)0.34910.01300.81240.02360.74310.00190.20060.0031
5025(25,0*24)0.35590.01870.81570.02150.73940.00280.20470.0047
(0*8,2,3*7,2,0*8)0.38750.06300.80600.02000.73170.00400.21970.0120
(3*6,0*12,1*7)0.38390.03500.80240.02010.73230.00360.21800.0080
30(20,0*29)0.34550.01440.81750.02040.74240.00200.19950.0034
((2,0,0)*10)0.36490.02200.80390.01900.73830.00280.20900.0054
(0*29,20)0.41220.05230.78700.02220.72720.00420.23050.0113
50(0*50)0.32000.00520.81380.014170.75180.00100.18710.0013
Table 12. Estimation values and MSEs of parameters, reliability and hazard functions using Metropolis-Hastings method under SELF when γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
Table 12. Estimation values and MSEs of parameters, reliability and hazard functions using Metropolis-Hastings method under SELF when γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
knmScheme γ ^ MH β ^ MH R ^ ( t ) MH H ^ ( t ) MH
EVMSEEVMSEEVMSEEVMSE
33020(10,0*19)0.35290.01920.85090.04750.74160.00290.20020.0040
((2,0)*2,(1,0)*6,0*4)0.36680.02300.83380.04230.73780.00350.20770.0053
((0*3,1*4)*2,1,1,0*4)0.37000.02400.83400.04200.73760.00330.20910.0054
30(0*30)0.32870.00810.85150.03380.74570.00190.19070.0020
5025(25,0*24)0.33670.01160.83940.02780.74370.00220.19480.0028
(0*8,2,3*7,2,0*8)0.35150.01760.82220.02420.74240.00270.20190.0043
(3*6,0*12,1*7)0.35860.01870.81570.02480.73940.00260.20540.0045
30(20,0*29)0.33170.00780.83340.02480.74450.00200.19300.0020
((2,0,0)*10)0.34280.01250.81650.02340.74570.00180.19730.0029
(0*29,20)0.35930.02440.82660.03020.74120.00230.20420.0051
50(0*50)0.31700.00380.82690.01810.75000.00110.18580.0010
53020(10,0*19)0.37430.02990.81530.03280.73740.00340.21150.0065
((2,0)*2,(1,0)*6,0*4)0.38230.03940.82160.02980.73410.00390.21580.0086
((0*3,1*4)*2,1,1,0*4)0.39220.04850.81820.03120.73270.00410.21990.0098
30(0*30)0.34790.01250.81150.02320.74380.00180.19990.0030
5025(25,0*24)0.35680.02240.81260.02210.74040.00300.20470.0053
(0*8,2,3*7,2,0*8)0.37640.03720.80920.02060.73530.00390.21470.0087
(3*6,0*12,1*7)0.39040.04520.79920.02270.73250.00400.22030.0099
30(20,0*29)0.34270.01280.81640.01920.74370.00200.19820.0031
((2,0,0)*10)0.36040.02040.80190.01780.74050.00250.20660.0048
(0*29,20)0.39350.07490.80030.02230.73500.00370.22020.0129
50(0*50)0.32450.00540.81210.01290.74870.00110.18990.0014
Table 13. Estimation values and MSEs of parameters, reliability and hazard functions using Metropolis-Hastings method under LLF when h = 0.5 , γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
Table 13. Estimation values and MSEs of parameters, reliability and hazard functions using Metropolis-Hastings method under LLF when h = 0.5 , γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
knmScheme γ ^ MH β ^ MH R ^ ( t ) MH H ^ ( t ) MH
EVMSEEVMSEEVMSEEVMSE
33020(10,0*19)0.35720.01820.86180.04740.73960.00300.20290.0041
((2,0)*2,(1,0)*6,0*4)0.35910.02200.85620.04590.74180.00280.20310.0048
((0*3,1*4)*2,1,1,0*4)0.37600.03300.84980.04470.73760.00330.21030.0064
30(0*30)0.33190.00930.85370.03480.74690.00190.19150.0022
5025(25,0*24)0.34430.01290.84170.03170.74230.00250.19830.0032
(0*8,2,3*7,2,0*8)0.36300.02130.82280.02690.74110.00240.20620.0047
(3*6,0*12,1*7)0.35920.01990.81420.02630.74440.00220.20350.0042
30(20,0*29)0.33500.00900.83470.02380.74540.00190.19390.0022
((2,0,0)*10)0.34810.01280.81800.02480.74510.00180.19940.0030
(0*29,20)0.36470.02150.82240.02680.74060.00210.20640.0044
50(0*50)0.31870.00420.82740.01950.75130.00100.18620.0011
53020(10,0*19)0.37450.03080.83470.03320.73800.00320.21050.0063
((2,0)*2,(1,0)*6,0*4)0.40340.07020.82540.03370.73240.00440.22280.0119
((0*3,1*4)*2,1,1,0*4)0.39920.05370.82810.03170.73290.00410.22130.0101
30(0*30)0.34550.01270.82850.02340.74400.00190.19870.0030
5025(25,0*24)0.36440.03630.81930.02330.73920.00280.20730.0065
(0*8,2,3*7,2,0*8)0.39900.06010.80650.02180.73140.00410.22330.0115
(3*6,0*12,1*7)0.38750.04100.81120.02340.73440.00360.21780.0086
30(20,0*29)0.33810.01170.82880.02040.74590.00190.19560.0029
((2,0,0)*10)0.37600.03080.80570.02000.73620.00300.21330.0065
(0*29,20)0.41720.07850.79940.02210.73010.00400.22880.0126
50(0*50)0.32270.00500.81860.01280.74970.00100.18870.0013
Table 14. Estimation values and MSEs of parameters, reliability and hazard functions using Metropolis-Hastings method under LLF when h = 0.5 , γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
Table 14. Estimation values and MSEs of parameters, reliability and hazard functions using Metropolis-Hastings method under LLF when h = 0.5 , γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
knmScheme γ ^ MH β ^ MH R ^ ( t ) MH H ^ ( t ) MH
EVMSEEVMSEEVMSEEVMSE
33020(10,0*19)0.35050.01550.83260.04000.73990.00300.20060.0036
((2,0)*2,(1,0)*6,0*4)0.35890.02320.82290.03740.74110.00300.20390.0052
((0*3,1*4)*2,1,1,0*4)0.36070.02180.82840.03560.73800.00320.20570.0051
30(0*30)0.33440.00880.82990.03090.74410.00200.19360.0022
5025(25,0*24)0.33760.01110.82910.02830.74250.00230.19570.0028
(0*8,2,3*7,2,0*8)0.35770.01970.81590.02680.73850.00280.20560.0048
(3*6,0*12,1*7)0.35400.01630.80840.02260.73940.00240.20360.0038
30(20,0*29)0.32310.00730.83750.02700.74700.00180.18870.0019
((2,0,0)*10)0.34190.01320.81600.02330.74360.00210.19760.0032
(0*29,20)0.36170.02250.80420.02740.74050.00240.20620.0049
50(0*50)0.31710.00410.81900.01570.75000.00100.18610.0011
53020(10,0*19)0.37290.03220.81100.03140.73590.00370.21160.0072
((2,0)*2,(1,0)*6,0*4)0.38970.04800.80700.02950.73070.00460.22070.0110
((0*3,1*4)*2,1,1,0*4)0.39860.05810.80140.02980.72910.00500.22480.0131
30(0*30)0.34120.01100.81180.02140.74390.00200.19740.0028
5025(25,0*24)0.35020.01640.80930.02080.74020.00270.20240.0042
(0*8,2,3*7,2,0*8)0.36670.02640.80330.01900.73610.00320.21100.0066
(3*6,0*12,1*7)0.37880.03210.80090.02120.73140.00380.21690.0079
30(20,0*29)0.33470.01180.80940.01850.74730.00190.19420.0029
((2,0,0)*10)0.35390.01890.80660.01810.73950.00260.20470.0049
(0*29,20)0.39400.04260.78790.02160.73060.00380.22320.0097
50(0*50)0.31930.00480.81500.01300.74960.00100.18750.0013
Table 15. Estimation values and MSEs of parameters, reliability and hazard functions using Metropolis-Hastings method under LLF when h = 1 , γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
Table 15. Estimation values and MSEs of parameters, reliability and hazard functions using Metropolis-Hastings method under LLF when h = 1 , γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
knmScheme γ ^ MH β ^ MH R ^ ( t ) MH H ^ ( t ) MH
EVMSEEVMSEEVMSEEVMSE
33020(10,0*19)0.34330.01560.83130.03610.74010.00280.19780.0037
((2,0)*2,(1,0)*6,0*4)0.34690.01730.82950.03500.74010.00290.19940.0040
((0*3,1*4)*2,1,1,0*4)0.36370.02540.81060.03280.73660.00350.20780.0061
30(0*30)0.33010.00770.82070.02780.74530.00190.19160.0019
5025(25,0*24)0.33260.00920.81800.02720.74430.00220.19330.0024
(0*8,2,3*7,2,0*8)0.35040.01740.80150.02070.74070.00260.20270.0045
(3*6,0*12,1*7)0.35490.01920.79330.02370.74100.00260.20410.0047
30(20,0*29)0.32410.00720.82660.02470.74610.00180.18940.0019
((2,0,0)*10)0.34060.01270.80940.02130.74220.00220.19790.0032
(0*29,20)0.35170.01780.79970.02330.74190.00220.20250.0043
50(0*50)0.31770.00380.80600.01500.75090.00100.18620.0010
53020(10,0*19)0.35940.02220.81170.02880.73610.00350.20710.0056
((2,0)*2,(1,0)*6,0*4)0.37660.03360.79870.02830.73270.00430.21570.0085
((0*3,1*4)*2,1,1,0*4)0.38060.03780.80260.02910.73120.00470.21800.0098
30(0*30)0.33860.01160.80960.02350.74420.00190.19630.0029
5025(25,0*24)0.34830.01580.80380.02030.73950.00270.20220.0041
(0*8,2,3*7,2,0*8)0.36840.02740.79870.01870.73250.00380.21330.0073
(3*6,0*12,1*7)0.36990.02650.78960.01870.73310.00380.21370.0071
30(20,0*29)0.34100.01180.81000.02080.74070.00210.19880.0031
((2,0,0)*10)0.35300.01620.79670.01630.73790.00260.20510.0044
(0*29,20)0.38460.03480.78560.02190.73040.00380.22050.0088
50(0*50)0.32360.00520.80450.01280.74790.00100.18990.0014
Table 16. Estimation values and MSEs of parameters, reliability and hazard functions using Metropolis-Hastings method under GELF when q = 0.5 , γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
Table 16. Estimation values and MSEs of parameters, reliability and hazard functions using Metropolis-Hastings method under GELF when q = 0.5 , γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
knmScheme γ ^ MH β ^ MH R ^ ( t ) MH H ^ ( t ) MH
EVMSEEVMSEEVMSEEVMSE
33020(10,0*19)0.34380.01660.83780.04210.74070.00320.19670.0038
((2,0)*2,(1,0)*6,0*4)0.35680.02090.82250.03680.73770.00330.20290.0046
((0*3,1*4)*2,1,1,0*4)0.34570.01920.83970.04030.74120.00310.19760.0044
30(0*30)0.32470.00770.83510.03240.74700.00180.18820.0018
5025(25,0*24)0.33340.01030.83790.03190.74070.00250.19360.0027
(0*8,2,3*7,2,0*8)0.34910.01970.81080.02450.74130.00270.20040.0046
(3*6,0*12,1*7)0.35170.01700.80770.02520.73940.00250.20180.0039
30(20,0*29)0.32630.00830.82320.02510.74690.00190.18950.0021
((2,0,0)*10)0.33710.01190.81260.02250.74440.00200.19500.0029
(0*29,20)0.35330.01760.80410.02390.74060.00250.20240.0042
50(0*50)0.31120.00340.82340.017060.75150.00100.18290.0009
53020(10,0*19)0.36370.02670.80400.02950.73810.00350.20650.0059
((2,0)*2,(1,0)*6,0*4)0.37330.04260.81710.02820.73200.00440.21210.0091
((0*3,1*4)*2,1,1,0*4)0.38860.05220.80330.03080.72970.00450.21830.0101
30(0*30)0.33580.01190.82190.02470.74360.00200.19450.0029
5025(25,0*24)0.34780.01700.81000.02030.73840.00270.20100.0041
(0*8,2,3*7,2,0*8)0.37030.02900.79730.01890.73220.00360.21210.0068
(3*6,0*12,1*7)0.36320.02390.79810.01930.73610.00320.20810.0058
30(20,0*29)0.33670.01200.80880.01900.74410.00190.19520.0030
((2,0,0)*10)0.35610.01880.80010.01890.73730.00270.20510.0046
(0*29,20)0.38090.04390.78870.02230.73450.00380.21580.0096
50(0*50)0.31830.00510.81120.01280.74980.00110.18670.0013
Table 17. Estimation values and MSEs of parameters, reliability and hazard functions using Metropolis-Hastings method under GELF when q = 0.5 , γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
Table 17. Estimation values and MSEs of parameters, reliability and hazard functions using Metropolis-Hastings method under GELF when q = 0.5 , γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
knmScheme γ ^ MH β ^ MH R ^ ( t ) MH H ^ ( t ) MH
EVMSEEVMSEEVMSEEVMSE
33020(10,0*19)0.33200.01330.81810.03600.73600.00340.19230.0033
((2,0)*2,(1,0)*6,0*4)0.32810.01300.82070.03760.73810.00330.19030.0034
((0*3,1*4)*2,1,1,0*4)0.34890.02490.79990.03720.73400.00380.19950.0054
30(0*30)0.31520.00630.81210.02810.74710.00190.18370.0016
5025(25,0*24)0.31960.00800.81630.02510.74190.00230.18700.0021
(0*8,2,3*7,2,0*8)0.34040.01620.79100.02360.73690.00310.19720.0041
(3*6,0*12,1*7)0.32970.01380.80380.02410.74090.00250.19150.0034
30(20,0*29)0.31660.00640.80600.02310.74640.00190.18500.0017
((2,0,0)*10)0.32200.00850.80610.02080.74300.00200.18840.0022
(0*29,20)0.34130.01570.79080.02370.73790.00240.19730.0037
50(0*50)0.31060.00320.80420.01560.74980.00110.18270.0009
53020(10,0*19)0.34130.01960.80610.03160.73430.00370.19720.0049
((2,0)*2,(1,0)*6,0*4)0.34770.02240.80080.02530.72930.00420.20130.0056
((0*3,1*4)*2,1,1,0*4)0.36450.03710.78550.02840.72700.00520.20830.0083
30(0*30)0.32430.00880.80110.02100.74330.00180.18920.0022
5025(25,0*24)0.34210.02010.79640.02240.73490.00320.19820.0046
(0*8,2,3*7,2,0*8)0.35040.02750.78900.01970.73070.00420.20280.0066
(3*6,0*12,1*7)0.34760.02410.79020.02250.73310.00380.20110.0060
30(20,0*29)0.33050.01010.78860.01770.74180.00210.19250.0026
((2,0,0)*10)0.33320.01330.79090.01680.73950.00260.19420.0035
(0*29,20)0.36010.03190.78180.02200.72910.00410.20700.0073
50(0*50)0.31330.00430.80760.01270.74720.00110.18480.0012
Table 18. Estimation values and MSEs of parameters, reliability and hazard functions using Metropolis-Hastings method under GELF when q = 1 , γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
Table 18. Estimation values and MSEs of parameters, reliability and hazard functions using Metropolis-Hastings method under GELF when q = 1 , γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , R ( t ) = 0.7563 , H ( t ) = 0.1786 , N = 1000.
knmScheme γ ^ MH β ^ MH R ^ ( t ) MH H ^ ( t ) MH
EVMSEEVMSEEVMSEEVMSE
33020(10,0*19)0.32490.01340.80330.03590.73770.00340.18830.0034
((2,0)*2,(1,0)*6,0*4)0.33120.01380.79390.03190.73420.00350.19210.0035
((0*3,1*4)*2,1,1,0*4)0.33460.02080.79050.03190.73480.00390.19310.0049
30(0*30)0.31820.00720.80480.02870.74220.00210.18580.0018
5025(25,0*24)0.32310.01050.80100.02680.73940.00260.18830.0026
(0*8,2,3*7,2,0*8)0.33640.01740.78700.02210.73340.00310.19560.0042
(3*6,0*12,1*7)0.32780.01270.79360.02330.73690.00280.19130.0032
30(20,0*29)0.31580.00670.80660.02260.74200.00210.18540.0018
((2,0,0)*10)0.32030.00980.79410.02270.74360.00190.18690.0024
(0*29,20)0.33040.01390.78800.02420.73900.00240.19200.0032
50(0*50)0.31030.00320.80230.01490.74720.00120.18300.0009
53020(10,0*19)0.33240.01780.78950.02630.73360.00390.19330.0045
((2,0)*2,(1,0)*6,0*4)0.34310.02330.78280.02610.72840.00470.19890.0059
((0*3,1*4)*2,1,1,0*4)0.34770.05310.78540.02930.72900.00530.20000.0109
30(0*30)0.31470.00810.80380.02100.74320.00190.18470.0021
5025(25,0*24)0.32760.01130.79290.02120.73650.00280.19160.0031
(0*8,2,3*7,2,0*8)0.34570.02750.77980.01970.72820.00470.20070.0069
(3*6,0*12,1*7)0.33880.01790.77920.01900.73100.00370.19740.0046
30(20,0*29)0.32120.00880.79280.01600.74070.00220.18860.0024
((2,0,0)*10)0.33270.01630.78370.01770.73570.00320.19440.0044
(0*29,20)0.34540.02240.77340.02100.72950.00400.20030.0057
50(0*50)0.31120.00340.82340.01710.75150.00100.18290.0009
Table 19. Average length and coverage probability of 95% asymptotic confidence/Bayesian credible interval for parameters under SELF when γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , N = 1000.
Table 19. Average length and coverage probability of 95% asymptotic confidence/Bayesian credible interval for parameters under SELF when γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 1.08 , b 1 = 3.6 , a 2 = 16 , b 2 = 20 , N = 1000.
knmScheme γ ^ ML β ^ ML R ^ ( t ) ML H ^ ( t ) ML
EVMSEEVMSEEVMSEEVMSE
33015(15,0*14)0.47070.9740.75160.9040.49780.9320.90520.936
(0*6,10,5,0*7)0.59120.9580.69020.8780.62540.9100.87240.924
((2,0)*7,1)0.60930.9680.71960.8960.68600.9200.89560.934
3020(10,0*19)0.38830.9800.68260.8900.39830.9400.82270.936
((2,0)*2,(1,0)*6,0*4)0.41040.9560.66860.8860.42480.9260.81350.928
((0*3,1*4)*2,1,1,0*4)0.43830.9640.66450.9000.45630.9240.79920.936
30(0*30)0.29680.9760.60710.9160.29710.9480.71750.962
5025(25,0*24)0.32950.9640.59660.9280.33260.9260.65250.946
(0*8,2,3*7,2,0*8)0.38960.9580.56020.9260.40290.9220.62910.946
(3*6,0*12,1*7)0.38760.9740.55500.8800.40110.9440.62290.920
30(20,0*29)0.29050.970.56820.9140.29300.9360.62280.940
((2,0,0)*10)0.33350.970.54500.8940.34020.9340.60310.932
(0*29,20)0.38300.970.57160.9040.41370.9320.64230.944
50(0*50)0.21550.9600.48100.9420.21240.9520.52150.950
53015(15,0*14)0.52320.9740.67660.9180.57900.9560.76660.958
(0*6,10,5,0*7)0.64860.9600.63550.9000.73330.9200.74830.930
((2,0)*7,1)0.82260.9620.66770.9021.00020.9020.78340.916
3020(10,0*19)0.43490.9660.62560.9200.46670.9140.71030.928
((2,0)*2,(1,0)*6,0*4)0.51590.9760.59430.9020.55980.9240.67790.930
((0*3,1*4)*2,1,1,0*4)0.52290.9720.59340.8940.56920.9440.67800.918
30(0*30)0.33550.9680.54570.9300.34230.9520.60460.950
5025(25,0*24)0.38390.9760.53550.9080.39860.9340.57550.922
(0*8,2,3*7,2,0*8)0.46220.9540.50460.9140.48850.9420.55130.954
(3*6,0*12,1*7)0.45860.9640.51420.9060.51320.9160.55870.934
30(20,0*29)0.33680.9680.50400.9000.34730.9360.53760.936
((2,0,0)*10)0.41050.9640.48870.9060.43580.9100.53050.918
(0*29,20)0.48850.9620.54400.9280.58040.9320.58560.944
50(0*50)0.24330.9620.42390.9440.24630.9440.45270.958
Table 20. Average length and coverage probability of 95% asymptotic confidence/Bayesian credible interval for parameters under SELF using noninformative priors when γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 0 , b 1 = 0 , a 2 = 0 , b 2 = 0 , N = 1000.
Table 20. Average length and coverage probability of 95% asymptotic confidence/Bayesian credible interval for parameters under SELF using noninformative priors when γ = 0.3 , β = 0.8 , t = 1.5 , a 1 = 0 , b 1 = 0 , a 2 = 0 , b 2 = 0 , N = 1000.
knmScheme γ ^ ML β ^ ML R ^ ( t ) ML H ^ ( t ) ML
EVMSEEVMSEEVMSEEVMSE
33015(15,0*14)0.45020.9480.73330.8920.48250.9460.92000.934
(0*6,10,5,0*7)0.59130.9560.68940.8860.67480.9300.90200.932
((2,0)*7,1)0.60470.9680.73860.8860.66870.9260.93460.934
3020(10,0*19)0.37130.9740.68270.8900.37930.9340.83170.938
((2,0)*2,(1,0)*6,0*4)0.41520.9600.67240.8980.43230.9240.83410.916
((0*3,1*4)*2,1,1,0*4)0.42930.9620.65950.9060.45380.9420.83340.936
30(0*30)0.29990.9620.59890.9120.30090.9580.71660.942
5025(25,0*24)0.32260.9360.57530.8860.33190.9420.65190.920
(0*8,2,3*7,2,0*8)0.40710.9660.55280.9200.42350.9320.62640.936
(3*6,0*12,1*7)0.38390.9720.55220.9040.40450.9440.62500.956
30(20,0*29)0.29230.9540.56370.9260.29510.9360.62770.938
((2,0,0)*10)0.32950.9580.54150.9080.33680.9440.60900.934
(0*29,20)0.39000.9540.57250.8960.42530.9140.65200.930
50(0*50)0.21890.9540.47230.9220.21910.9600.51700.950
53015(15,0*14)0.55690.9720.67860.9000.61720.9340.78050.932
(0*6,10,5,0*7)0.76540.9620.62690.8780.89170.9040.74150.916
((2,0)*7,1)0.74700.9460.67530.8840.92810.9340.80980.916
3020(10,0*19)0.44400.9720.62150.9100.47180.9280.70830.914
((2,0)*2,(1,0)*6,0*4)0.52220.9680.60350.9040.56710.9240.70820.936
((0*3,1*4)*2,1,1,0*4)0.51330.9740.60590.9100.55410.9300.69610.932
30(0*30)0.34340.9660.53810.9140.35300.9440.60630.928
5025(25,0*24)0.37090.9780.53770.9320.38880.9440.57870.950
(0*8,2,3*7,2,0*8)0.48590.9600.49740.9020.51870.9260.54910.946
(3*6,0*12,1*7)0.45200.9620.51890.9040.50150.9260.56850.912
30(20,0*29)0.33640.9600.50270.9260.34810.9280.53790.920
((2,0,0)*10)0.39480.9480.49940.9040.41850.9260.54790.916
(0*29,20)0.47390.9580.53060.9240.56140.9420.58370.944
50(0*50)0.24430.9620.42380.9500.24470.9500.44860.962
Table 21. The practical data sets of tensile strength of carbon fibers.
Table 21. The practical data sets of tensile strength of carbon fibers.
1 3.73.114.423.283.752.963.393.313.152.811.412.763.19
14 1.592.173.511.841.611.571.892.753.272.413.092.432.53
27 2.813.312.352.772.684.911.572.001.172.170.392.791.08
40 2.882.732.873.191.872.952.674.202.852.552.172.973.68
53 0.811.225.081.693.684.702.032.822.501.473.223.152.97
66 2.933.332.562.592.831.361.845.561.122.481.252.482.03
79 1.612.053.603.111.694.903.393.222.553.562.381.920.98
92 1.591.731.711.184.380.851.802.123.65
Table 22. Results of fitting different functions to the practical data.
Table 22. Results of fitting different functions to the practical data.
N.O.PDistributionMLEs ln L AICBICK-S
1Exponential θ ^ = 0.3829 195.9925393.9850396.59010.3218
1HLD θ ^ = 1.7442 181.1867364.3733366.97850.2919
2Weibull γ ^ = 0.0496 140.9977285.9954291.20570.0632
β ^ = 2.7924
2IWD γ ^ = 1.7737 172.5033349.0067354.21700.5232
β ^ = 3.0856
2GIRD γ ^ = 1.1500 174.0566352.1132357.32350.2012
β ^ = 0.5271
2IEHLD γ ^ = 5.5581 151.9385307.8769313.08730.1358
β ^ = 0.1523
Note: The N.O.P represents the number of parameters in each distribution.
Table 23. The grouped data.
Table 23. The grouped data.
Group Iteam12345678910111213
13.392.351.82.054.902.030.811.172.962.482.682.173.27
22.751.473.61.222.172.733.333.390.851.362.412.881.59
Group Iteam14151617181920212223242526
12.484.703.093.282.175.561.184.422.813.153.222.933.22
22.812.671.082.974.912.431.613.193.193.312.123.111.84
Group Iteam27282930313233343536373839
15.081.574.202.032.773.561.122.501.713.651.613.111.92
21.252.562.533.680.391.892.871.843.512.953.312.822.55
Group Iteam4041424344454647484950
12.852.791.734.383.151.691.411.691.592.762.97
22.592.551.871.572.003.702.380.983.682.833.75
Table 24. The progressive first-failure censored samples generated from the practical data sets.
Table 24. The progressive first-failure censored samples generated from the practical data sets.
k , m , n Censoring SchemeProgressive First-Failure Censored Sample
2 , 50 , 35 1 = (1*15, 0*20) 0.39, 0.85, 1.08, 1.17, 1.22, 1.36, 1.47, 1.57, 1.59
1.69, 1.73, 1.84, 1.89, 2.00, 2.03, 2.17, 2.17, 2.17
2.41, 2.43, 2.48, 2.53, 2.55, 2.59, 2.67, 2.75, 2.76
2.81, 2.82, 2.93, 2.95, 2.97, 2.97, 3.15, 3.19
2 = (0*15, 3*5, 0*15) 0.39, 0.81, 0.85, 0.98, 1.08, 1.12, 1.17, 1.18, 1.22
1.25, 1.36, 1.41, 1.47, 1.57, 1.57, 1.59, 1.71, 1.84
2.03, 2.17, 2.48, 2.53, 2.55, 2.59, 2.67, 2.75, 2.76
2.81, 2.82, 2.93, 2.95, 2.97, 2.97, 3.15, 3.19
3 = (0*34, 15) 0.39, 0.81, 0.85, 0.98, 1.08, 1.12, 1.17, 1.18, 1.22
1.25, 1.36, 1.41, 1.47, 1.57, 1.57, 1.59, 1.59, 1.61
1.69, 1.71, 1.73, 1.80, 1.84, 1.84, 1.89, 1.92, 2.00
2.03, 2.03, 2.12, 2.17, 2.17, 2.17, 2.41, 2.43
Table 25. Maximum Likelihood and Bayesian Estimates under different schemes.
Table 25. Maximum Likelihood and Bayesian Estimates under different schemes.
EstimationCensoring Scheme
1 2 3
γ ^ M L 3.7306 [ 0.6542,6.8100 ]1.8196 [ 0.5276,3.1116 ]1.6307 [ 0.4579,2.8035 ]
γ ^ L B 3.93201.86551.6837
γ ^ M H 1.3597 [ 0.2560,4.1397 ]1.9471 [ 0.2569,3.1614 ]1.7058 [ 0.2512,4.3786 ]
β ^ M L 0.1555 [ 0.1115,0.1996 ]0.2127 [ 0.1490,0.2765 ]0.2356 [ 0.1630,0.3082 ]
β ^ L B 0.15970.21980.2433
β ^ M H 0.3211 [ 0.1479,0.7694 ]0.2120 [ 0.1758,0.7935 ]0.2400 [ 0.1731,0.8261 ]
R ^ ( t ) M L 0.01280.06940.0779
R ^ ( t ) L B 0.02780.09070.0990
R ^ ( t ) M H 0.20270.07770.0902
H ^ ( t ) M L 0.34860.17540.1583
H ^ ( t ) L B 0.37320.18310.1664
H ^ ( t ) M H 0.12960.18680.1650
Table 26. Comparision of censoring schemes using different criteria.
Table 26. Comparision of censoring schemes using different criteria.
Censoring SchemeDifferent Criteria
d e t ( I 1 ( θ ^ ) ) t r a c e ( I 1 ( θ ^ ) ) V a r [ ln α ^ 0.05 ] V a r [ ln α ^ 0.95 ] 0 1 V a r [ ln α ^ p ] d p
1 = (1*15, 0*20) 2.009 × 10 4 2.46904.867660.679024.1327
2 = (0*15, 3*5, 0*15) 9.996 × 10 5 0.43560.18135.20601.7082
3 = (0*34, 15) 1.043 × 10 4 0.35940.10963.90381.2315

Share and Cite

MDPI and ACS Style

Zhang, F.; Gui, W. Parameter and Reliability Inferences of Inverted Exponentiated Half-Logistic Distribution under the Progressive First-Failure Censoring. Mathematics 2020, 8, 708. https://doi.org/10.3390/math8050708

AMA Style

Zhang F, Gui W. Parameter and Reliability Inferences of Inverted Exponentiated Half-Logistic Distribution under the Progressive First-Failure Censoring. Mathematics. 2020; 8(5):708. https://doi.org/10.3390/math8050708

Chicago/Turabian Style

Zhang, Fengshi, and Wenhao Gui. 2020. "Parameter and Reliability Inferences of Inverted Exponentiated Half-Logistic Distribution under the Progressive First-Failure Censoring" Mathematics 8, no. 5: 708. https://doi.org/10.3390/math8050708

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop