Periodic Intermediate β-Expansions of Pisot Numbers
Abstract
:1. Introduction, Motivation and Main Results
1.1. Introduction and Motivation
- (i)
- If the -shift is a subshift of finite type, then .
- (ii)
- If is not the positive nth-root of a Perron number, for some , then the set of with a subshift of finite type is empty.
1.2. Statement of Main Results
- (i)
- If , then β is either a Pisot or a Salem number.
- (ii)
- If β is a Pisot number, then .
- (i)
- determine a set of which lie dense in a subset of positive Lebesgue measure of the fibre , for all integers m and , and
- (ii)
- classify the set , in the case that is the n-th root of a Pisot number and is non-transitive.
1.3. Outline
2. Preliminaries
2.1. Subshifts
- (i)
- for all and ;
- (ii)
- if , then there exist integers and such that .
2.2. Intermediate -Shifts and Expansions
2.3. Uniform Lorenz Maps
3. Fiber Denseness of Intermediate -Shifts of Finite Type: Proof of Theorem 1
4. Periodic Expansions of Pisot and Salem Numbers: Proof of Theorem 2
- (i)
- (ii)
- (iii)
5. Periodic Expansions of Pisot and Salem Numbers: Proof of Corollaries 1 and 2
Author Contributions
Funding
Conflicts of Interest
References
- Rényi, A. Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 1957, 8, 477–493. [Google Scholar] [CrossRef]
- Parry, W. On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 1960, 11, 401–416. [Google Scholar] [CrossRef]
- Sparrow, C. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors; Applied Mathematical Sciences; Springer: New York, NY, USA; Berlin, Germany, 1982; Volume 41. [Google Scholar]
- Daubechies, I.; DeVore, R.; Gunturk, C.S.; Vaishampayan, V.A. Beta expansions: A new approach to digitally corrected A/D conversion. In Proceedings of the 2002 IEEE International Symposium on Circuits and Systems, Scottsdale, AZ, USA, 26–29 May 2002; Volume 2, pp. II–784–II–787. [Google Scholar]
- Li, B.; Sahlsten, T.; Samuel, T.; Steiner, W. Denseness of Intermediate β-shifts of Finite Type. Proc. Am. Math. Soc. 2019, 147, 2045–2055. [Google Scholar] [CrossRef]
- Komornik, V. Expansions in noninteger bases. Integers 2011, 11B, 11A63. [Google Scholar]
- Mosbach, A. Finite and Infinite Rotation Sequences and Beyond. Ph.D. Thesis, Universität Bremen, Bremen, Germany, 2019. [Google Scholar]
- Sidorov, N. Arithmetic dynamics. In Topics in Dynamics and Ergodic Theory; London Mathematical Society Lecture Note Series; Cambridge University Press: Cambridge, UK, 2003; Volume 310, pp. 145–189. [Google Scholar]
- Akiyama, S.; Feng, D.J.; Kempton, T.; Persson, T. On the Hausdorff dimension of Bernoulli convolutions. Int. Math. Res. Not. 2018. [Google Scholar] [CrossRef]
- Dajani, K.; Kalle, C. Local dimensions for the random β-transformation. N. Y. J. Math. 2013, 19, 285–303. [Google Scholar]
- Erdös, P.; Joó, I.; Komornik, V. Characterization of the unique expansions and related problems. Bull. Soc. Math. Fr. 1990, 118, 377–390. [Google Scholar] [CrossRef]
- Sidorov, N. Almost every number has a continuum of β-expansions. Am. Math. Mon. 2003, 110, 838–842. [Google Scholar]
- Allouche, J.P.; Frougny, C.; Hare, K.G. On univoque Pisot numbers. Math. Comp. 2007, 76, 1639–1660. [Google Scholar] [CrossRef] [Green Version]
- Komornik, V.; Loreti, P. Unique developments in non-integer bases. Am. Math. Mon. 1998, 105, 636–639. [Google Scholar] [CrossRef]
- Barnsley, M.; Harding, B.; Vince, A. The entropy of a special overlapping dynamical system. Ergod. Theory Dynam. Syst. 2014, 34, 483–500. [Google Scholar] [CrossRef] [Green Version]
- Hofbauer, F. Maximal measures for piecewise monotonically increasing transformations on [0,1]. In Ergodic Theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1978); Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1979; Volume 729, pp. 66–77. [Google Scholar]
- Hubbard, J.H.; Sparrow, C.T. The classification of topologically expansive Lorenz maps. Commun. Pure Appl. Math. 1990, 43, 431–443. [Google Scholar] [CrossRef]
- Ito, S.; Takahashi, Y. Markov subshifts and realization of β-expansions. J. Math. Soc. Jpn. 1974, 26, 33–55. [Google Scholar] [CrossRef]
- Parry, W. The Lorenz attractor and a related population model. In Ergodic Theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1978); Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1979; Volume 729, pp. 169–187. [Google Scholar]
- Li, B.; Sahlsten, T.; Samuel, T. Intermediate β-shifts of finite type. Discrete Contin. Dyn. Syst. 2016, 36, 323–344. [Google Scholar] [CrossRef]
- Palmer, R. On the Classification of Measure Preserving Transformations of Lebesgue Spaces. Ph.D. Thesis, University of Warwick, Coventry, UK, 1979. [Google Scholar]
- Glendinning, P. Topological conjugation of Lorenz maps by β-transformations. Math. Proc. Camb. Philos. Soc. 1990, 107, 401–413. [Google Scholar] [CrossRef]
- Glendinning, P.; Hall, T. Zeros of the kneading invariant and topological entropy for Lorenz maps. Nonlinearity 1996, 9, 999–1014. [Google Scholar] [CrossRef]
- Lind, D.A. The entropies of topological Markov shifts and a related class of algebraic integers. Ergod. Theory Dynam. Syst. 1984, 4, 283–300. [Google Scholar] [CrossRef] [Green Version]
- Kalle, C.; Steiner, W. Beta-expansions, natural extensions and multiple tilings associated with Pisot units. Trans. Am. Math. Soc. 2012, 364, 2281–2318. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, A. Développements en base de Pisot et répartition modulo 1. C. R. Acad. Sci. Paris Sér. A-B 1977, 285, A419–A421. [Google Scholar]
- Schmidt, K. On periodic expansions of Pisot numbers and Salem numbers. Bull. Lond. Math. Soc. 1980, 12, 269–278. [Google Scholar] [CrossRef]
- Boyd, D.W. Salem numbers of degree four have periodic expansions. In Théorie des Nombres (Quebec, PQ, 1987); de Gruyter: Berlin, Germany, 1989; pp. 57–64. [Google Scholar]
- Boyd, D.W. On the beta expansion for Salem numbers of degree 6. Math. Comp. 1996, 65, 861–875. [Google Scholar] [CrossRef] [Green Version]
- Boyd, D.W. The beta expansion for Salem numbers. Org. Math. 1997, 20, 117–131. [Google Scholar]
- Maia, B.M. The beta-transformation’s companion map for Pisot or Salem numbers and their periodic orbits. Dyn. Syst. 2018, 33, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Baker, S.; Masáková, Z.; Pelantová, E.; Vávra, T. On periodic representations in non-Pisot bases. Monatsh. Math. 2017, 184, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Parry, W. Representations for real numbers. Acta Math. Acad. Sci. Hungar. 1964, 15, 95–105. [Google Scholar] [CrossRef]
- Halfin, S. Explicit construction of invariant measures for a class of continuous state Markov processes. Ann. Probab. 1975, 3, 859–864. [Google Scholar] [CrossRef]
- Hofbauer, F. On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. Isr. J. Math. 1979, 34, 213–237. [Google Scholar] [CrossRef]
- Hofbauer, F. On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. II. Isr. J. Math. 1981, 38, 107–115. [Google Scholar] [CrossRef]
- Dajani, K.; Kraaikamp, C. From greedy to lazy expansions and their driving dynamics. Expo. Math. 2002, 20, 315–327. [Google Scholar] [CrossRef] [Green Version]
- Bruin, H.; Carminati, C.; Kalle, C. Matching for generalised β-transformations. Indag. Math. 2017, 28, 55–73. [Google Scholar] [CrossRef]
- Bruin, H.; Carminati, C.; Marmi, S.; Profeti, A. Matching in a family of piecewise affine maps. Nonlinearity 2019, 32, 172. [Google Scholar] [CrossRef] [Green Version]
- Cooperband, Z.; Pearse, E.P.J.; Quackenbush, B.; Rowley, J.; Samuel, T.; West, M. Continuity of entropy for Lorenz maps. Indag. Math. 2020, 31, 96–105. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quackenbush, B.; Samuel, T.; West, M. Periodic Intermediate β-Expansions of Pisot Numbers. Mathematics 2020, 8, 903. https://doi.org/10.3390/math8060903
Quackenbush B, Samuel T, West M. Periodic Intermediate β-Expansions of Pisot Numbers. Mathematics. 2020; 8(6):903. https://doi.org/10.3390/math8060903
Chicago/Turabian StyleQuackenbush, Blaine, Tony Samuel, and Matt West. 2020. "Periodic Intermediate β-Expansions of Pisot Numbers" Mathematics 8, no. 6: 903. https://doi.org/10.3390/math8060903
APA StyleQuackenbush, B., Samuel, T., & West, M. (2020). Periodic Intermediate β-Expansions of Pisot Numbers. Mathematics, 8(6), 903. https://doi.org/10.3390/math8060903