A Study of the Second-Kind Multivariate Pseudo-Chebyshev Functions of Fractional Degree
Abstract
1. Introduction
2. Basic Definitions
2.1. Recalling the Functions
2.2. Matrix Powers Representation
2.3. The Dunford–Taylor Integral
2.4. Integral Representation of the Functions
3. Multivariate Second-Kind Chebyshev Polynomials
4. Extension to the Rational Case
5. The Three-Dimensional Case
5.1. Numerical Examples
5.1.1. A Worked Example
5.1.2. A few Other Examples
- Consider the matrix:The invariants are:A square root is given by
- Consider the following matrix:The invariants are given below:A square root is given by
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Srivastava, H.M.; Kizilateş, C. A parametric kind of the Fubini-type polynomials. Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. 2019, 113, 3253–3267. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Ricci, P.E.; Natalini, P. A family of complex Appell polynomial sets. Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. 2019, 113, 2359–2371. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Riyasat, M.; Khan, S.; Araci, S.; Acikgoz, M. A new approach to Legendre-truncated-exponential-based Sheffer sequences via Riordan arrays. Appl. Math. Comput. 2020, 369, 124683. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Çetinkaya, A.; Kımaz, O. A certain generalized Pochhammer symbol and its applications to hypergeometric functions. Appl. Math. Comput. 2014, 226, 484–491. [Google Scholar] [CrossRef]
- Srivastava, R.; Cho, N.E. Generating functions for a certain class of incomplete hypergeometric polynomials. Appl. Math. Comput. 2012, 219, 3219–3225. [Google Scholar] [CrossRef]
- Srivastava, R. Some properties of a family of incomplete hypergeometric functions. Russ. J. Math. Phys. 2013, 20, 121–128. [Google Scholar] [CrossRef]
- Srivastava, R.; Cho, N.E. Some extended Pochhammer symbols and their applications involving generalized hypergeometric polynomials. Appl. Math. Comput. 2014, 234, 277–285. [Google Scholar] [CrossRef]
- Srivastava, R. Some classes of generating functions associated with a certain family of extended and generalized hypergeometric functions. Appl. Math. Comput. 2014, 243, 132–137. [Google Scholar] [CrossRef]
- Ricci, P.E. Sulle potenze di una matrice. Rend. Mat. 1976, 9, 179–194. [Google Scholar]
- Ricci, P.E. I polinomi di Tchebycheff in più variabili. Rend. Mat. 1978, 11, 295–327. [Google Scholar]
- Ricci, P.E. Complex spirals and pseudo-Chebyshev polynomials of fractional degree. Symmetry 2018, 10, 671. [Google Scholar] [CrossRef]
- Ricci, P.E. A survey on pseudo-Chebyshev functions. 4Open 2020, 3, 1–19. [Google Scholar] [CrossRef]
- Bruschi, M.; Ricci, P.E. I polinomi di Lucas e di Tchebycheff in più variabili. Rend. Mat. 1980, 13, 507–530. [Google Scholar]
- Gantmacher, F.R. The Theory of Matrices; Chelsea Publishing Company: New York, NY, USA, 1959. [Google Scholar]
- Lutkepohl, H. Handbook of Matrices; John Wiley and Sons: New York, NY, USA, 1996. [Google Scholar]
- Yood, B. Rootless matrices. Math. Mag. 2002, 75, 219–223. [Google Scholar] [CrossRef]
- Mitchell, D.W. Using Pythagorean triples to generate square roots of I2. Math. Gaz. 2003, 87, 499–500. [Google Scholar] [CrossRef]
- Al-Tamimi, I.A. The square roots of 2×2 invertible matrices. Adv. Algebra 2010, 3, 15–18. [Google Scholar]
- Rao, S.S.; Jagadeeshwar, P.; Somasekhar, K. On the square root of a matrix. J. Glob. Res. Math. Arch. 2013, 1, 30–33. [Google Scholar]
- Psarrakos, P.J. On the mth roots of a complex matrix. Electron. J. Linear Alg. 2002, 9, 32–41. [Google Scholar]
- DJoiţa, M.; Jäntschi, L. Extending the characteristic polynomial for characterization of C20 Fullerene Congeners. Mathematics 2017, 5, 1–12. [Google Scholar]
- Bruschi, M.; Ricci, P.E. An explicit formula for f(A) and the generating function of the generalized Lucas polynomials. SIAM J. Math. Anal. 1982, 13, 162–165. [Google Scholar] [CrossRef]
- Raghavacharyulu, I.V.V.; Tekumalla, A.R. Solution of the Difference Equations of Generalized Lucas Polynomials. J. Math. Phys. 1972, 13, 321–324. [Google Scholar] [CrossRef]
- Brenner, J.L. Linear recurrence relations. Amer. Math. Mon. 1954, 61, 171–173. [Google Scholar] [CrossRef]
- Lucas, É. Théorie des Nombres; Gauthier-Villars: Paris, France, 1891. [Google Scholar]
- Lidl, R.; Wells, C. Chebyshev polynomials in several variables. J. Reine Angew. Math. 1972, 255, 104–111. [Google Scholar]
- Lidl, R. Tschebyscheffpolynome in mehreren variabelen. J. Reine Angew. Math. 1975, 273, 178–198. [Google Scholar]
- Dunn, K.B.; Lidl, R. Multi-dimensional generalizations of the Chebyshev polynomials. I and II. Proc. Jpn. Acad. Ser. A Math. Sci. 1980, 56, 154–165. [Google Scholar] [CrossRef]
- Beerends, R.J. Chebyshev polynomials in several variables and the radial part of the Laplace-Beltrami operator. Trans.Amer. Math. Soc. 1991, 328, 779–814. [Google Scholar] [CrossRef]
- Kato, T. Perturbation Theory for Linear Operators; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1966. [Google Scholar]
- Riesz, F.; Nagy, B.S. Functional Analysis; Dover: New York, NY, USA, 1990. [Google Scholar]
- Fantappiè, L. I massimi e i minimi dei funzionali analitici reali. Atti Acc. Naz. Lincei Rend. Sci. Fis. Mat. Nat. 1930, 8, 296–301. [Google Scholar]
- Hirsch, M.W.; Smale, S.; Devaney, R.L. Differential Equations, Dynamical Systems: An Introduction to Chaos; Academic Press: San Diego, CA, USA; Elsevier Science B.V.: London, UK, 2003. [Google Scholar]
- Scheinerman, E.R. Invitation to Dynamical Systems; Dover Publishing Company: New York, NY, USA, 2012. [Google Scholar]
- Natalini, P.; Ricci, P.E. A “hard to die” series expansion and Lucas polynomials of the second kind. Appl. Math. 2015, 6, 1235–1240. [Google Scholar] [CrossRef]
- Natalini, P.; Ricci, P.E. Solution of linear dynamical systems using Lucas polynomials of the second kind. Appl. Math. 2016, 7, 616–628. [Google Scholar] [CrossRef]
- Caratelli, D.; Srivastava, R.; Ricci, P.E. Methods for computing matrix roots of a non-singular complex matrix. In Proceedings of the AMINSE 20, Tbilisi, Georgia, 17–20 June 2020. submitted. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricci, P.E.; Srivastava, R. A Study of the Second-Kind Multivariate Pseudo-Chebyshev Functions of Fractional Degree. Mathematics 2020, 8, 978. https://doi.org/10.3390/math8060978
Ricci PE, Srivastava R. A Study of the Second-Kind Multivariate Pseudo-Chebyshev Functions of Fractional Degree. Mathematics. 2020; 8(6):978. https://doi.org/10.3390/math8060978
Chicago/Turabian StyleRicci, Paolo Emilio, and Rekha Srivastava. 2020. "A Study of the Second-Kind Multivariate Pseudo-Chebyshev Functions of Fractional Degree" Mathematics 8, no. 6: 978. https://doi.org/10.3390/math8060978
APA StyleRicci, P. E., & Srivastava, R. (2020). A Study of the Second-Kind Multivariate Pseudo-Chebyshev Functions of Fractional Degree. Mathematics, 8(6), 978. https://doi.org/10.3390/math8060978