Study on an AHP-Entropy-ANFIS Model for the Prediction of the Unfrozen Water Content of Sodium-Bicarbonate-Type Salinization Frozen Soil
Abstract
:1. Introduction
2. Materials
2.1. Test Soil Materials
2.2. Design for the Remodeling Samples
2.3. Test Remodeling Samples
3. Methodology
3.1. Predictive Model Development
3.1.1. Weighting Method
3.1.2. The Adaptive Network-Based Fuzzy Inference System
3.1.3. The Support Vector Machine
3.2. Data Collection and Collation
3.3. Models Comparison Method
4. Results and Discussion
4.1. Mechanisms Affecting Unfrozen Water Content
4.2. Analysis of the Degree of Importance of the Factors Affecting the Unfrozen Water Content
4.2.1. The Analytic Hierarchy Process
4.2.2. The Entropy Weight Method
4.2.3. The Combined Weighting Method
4.3. Compare and Select the Model
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, F.; Wang, Z.C.; Wang, Y.H.; An, F.H.; Yang, H.T. Soil water characteristic of saline-sodic soil in songnen plain. Sci. Geogr. Sin. 2015, 35, 340–345. [Google Scholar]
- Leng, G.J.; Chen, H.E.; Fu, R.; Gao, Y. Analysis on physical-mechanical properties and saliniferous feature of saline soil in Songhuajiang-Nenjiang plain. Railw. Eng. 2016, 06, 104–107. [Google Scholar]
- Sun, D.Y.; Wang, W.H.; Wang, Q.; Chen, J.P.; Niu, C.C.; Cao, C. Characteristics and prediction of the frost heave of saline soil in western Jilin province. Int. J. Heat Technol. 2016, 34, 709–714. [Google Scholar] [CrossRef]
- Zhang, X.D.; Wang, Q.; Wang, G.; Wang, W.H.; Chen, H.E.; Zhang, Z.Q. A study on the coupled model of hydrothermal-salt for saturated freezing salinized soil. Math. Probl. Eng. 2017, 2017, 4918461. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.H.; Ma, H.W.; Liu, Q.; Zhu, W.; Zhang, T.X. Development and drives of land salinization in Songnen plain. Geol. Resour. 2007, 16, 120–124. [Google Scholar]
- Wang, N.; Wang, Q.; Huo, Z.S.; Ma, B.; Chen, Y. Influence of salt and compaction on critical water content of frost heaving of saline soil. J. Eng. Geol. 2016, 24, 951–958. [Google Scholar]
- Zhang, X.D.; Liu, S.W.; Wang, Q.; Wang, G.; Liu, Y.F. Experimental investigation of water migration characteristics for saline soil. Pol. J. Environ. Stud. 2019, 28, 1495–1505. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.D.; Wang, Q.; Huo, Z.S.; Yu, T.W.; Wang, G.; Liu, T.B.; Wang, W.H. Prediction of frost-heaving behavior of saline soil in western jilin province, china, by neural network methods. Math. Probl. Eng. 2017, 2017, 7689415. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.G.; Zhang, M.Y.; Zhang, X.Y.; Yan, Z.R. Experimental study on unfrozen water content and the freezing temperature during freezing and thawing processes. Chin. J. Rock Mech. Eng. 2017, 07, 248–257. [Google Scholar]
- Flerchinger, G.N.; Seyfried, M.S.; Hardegree, S.P. Using soil freezing characteristics to model multi-season soil water dynamics. Vadose Zone J. 2006, 5, 1143–1153. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Wake, T. Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR. Cold Reg. Sci. Technol. 2009, 59, 34–41. [Google Scholar] [CrossRef]
- Chen, Y.C.; Zhang, X.F.; Yi, Z.Z. Test device for unfrozen water content of frozen soil (test box). Oil-Gasfield Surf. Eng. 1995, 4, 49–51. [Google Scholar]
- Li, M.B.; Yu, S.H.; Yan, M.Q.; Zheng, X. The analysis of unfrozen water in frozen soil by near infrared spectroscopy. Shanxi Archit. 2015, 41, 61–63. [Google Scholar]
- Kozlowski, T. A comprehensive method of determining the soil unfrozen water curves: 2. stages of the phase change process in frozen soil–water system. Cold Reg. Sci. Technol. 2003, 36, 81–92. [Google Scholar] [CrossRef]
- Liu, H.; Yang, G.S.; Ye, W.J.; Shen, Y.J. Analysis of unfrozen water content and damage characteristics based on histogram technique of CT images. J. Glaciol. Geocryol. 2015, 37, 1591–1598. [Google Scholar]
- Yu, H.L.; Wang, W.; Ma, Y.S.; Xu, X.Y. Analysis on unfrozen water content of Mohe permafrost based on NMR method. Adv. Mater. Res. 2014, 881–883, 1185–1188. [Google Scholar] [CrossRef]
- Vugmeyster, L.; Hagedorn, B.; Clark, M.A.; Sletten, R.S. Evaluating the effect of grain size and salts on liquid water content in frozen soils of Antarctica by combining NMR, chemical equilibrium modeling, and scattered diffraction analysis. Geoderma 2017, 299, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Цытoвич, H.A.; Zhang, C.Q. Frozen Soil Mechanics; Science Press: Beijing, China, 1985. [Google Scholar]
- Tice, A.R.; Anderson, D.M.; Banin, A. The Prediction of Unfrozen Water Contents in Frozen Soils from Liquid Limit Determinations; Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1976. [Google Scholar]
- Kozlowski, T. A semi-empirical model for phase composition of water in clay-water systems. Cold Reg. Sci. Technol. 2007, 49, 226–236. [Google Scholar] [CrossRef]
- Tan, Y.H.; Zhang, J.M.; Zheng, B.; Qu, G.Z. The relationship between unfrozen water content and temperature based on continuum thermodynamics. J. Qingdao Univ. (Eng. Technol. Ed.) 2008, 1, 77–82. [Google Scholar]
- Jin, X.; Yang, W.; Meng, X.H.; Lei, L.L. Theoretical deduction and application of unfrozen water content in frozen soil based on double-layer. Rock Soil Mech. 2019, 40, 1449–1456. [Google Scholar]
- Saaty, T.L. Modeling unstructured decision problems—The theory of analytical hierarchies. Math. Comput. Simul. 1978, 20, 147–158. [Google Scholar] [CrossRef]
- Cao, C.; Wang, Q.; Chen, J.; Ruan, Y.; Zheng, L.; Song, S.; Niu, C. Landslide susceptibility mapping in vertical distribution law of precipitation area: Case of the Xulong hydropower station reservoir, southwestern China. Water 2016, 8, 270. [Google Scholar] [CrossRef] [Green Version]
- Song, H.L.; Lu, X.W.; Wu, Q.; Xu, Y.C.; Peng, B. Weight calculation method for consumer goods risk assessment indexes based on analytic hierarchy process. IOP Conf. Ser. Earth Environ. Sci. 2020, 440, 042001. [Google Scholar] [CrossRef]
- Li, Y.C.; Chen, J.P.; Zhang, Y.W.; Song, S.Y.; Han, X.D.; Ammar, M. Debris flow susceptibility assessment and runout prediction: A case study in Shiyang Gully, Beijing, China. Int. J. Environ. Res. 2020, 14, 365–383. [Google Scholar] [CrossRef]
- Chen, C.C.; Tseng, C.Y.; Dong, J.J. New entropy-based method for variables selection and its application to the debris-flow hazard assessment. Eng. Geol. 2007, 94, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Wang, Q.; Chen, J.P.; Gu, F.G.; Zhang, W. Evaluation of debris flow risk in Jinsha River based on combined weight process. Rock Soil Mech. 2011, 32, 831–836. [Google Scholar]
- Jang, J.S.R. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Shamshirband, S.; Hadipoor, M.; Baghban, A.; Mosavi, A.; Bukor, J.; Várkonyi-Kóczy, A.R. Developing an ANFIS-PSO model to predict mercury emissions in combustion flue gases. Mathematics 2019, 7, 965. [Google Scholar] [CrossRef] [Green Version]
- Bi, Z.; Ma, J.; Pan, X.; Wang, J.; Shi, Y. ANFIS-based modeling for photovoltaic characteristics estimation. Symmetry 2016, 8, 96. [Google Scholar] [CrossRef] [Green Version]
- Özcan, F.; Atiş, C.D.; Karahan, O. Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete. Adv. Eng. Softw. 2009, 40, 856–863. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Sarmadian, F.; Shiri, J.; Iqbal, M.; Rebecca, T.C.; Omran, E.S.E. Application of ANFIS-based subtractive clustering algorithm in soil cation exchange capacity estimation using soil and remotely sensed data. Measurement 2016, 95, 173–180. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V.N. Support vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Yuan, Y.; Yu, S.J.; Wang, C.H.; Zhou, A.H. Evaluation model for surrounding rock stability based on support vector machine optimized by grid search method. Geol. Explor. 2019, 55, 608–613. [Google Scholar]
- Sun, X.H.; Chen, J.P.; Han, X.D.; Bao, Y.D.; Zhan, J.W.; Peng, W. Application of a GIS-based slope unit method for landslide susceptibility mapping along the rapidly uplifting section of the upper Jinsha river, south-western China. Bull. Eng. Geol. Environ. 2020, 79, 533–549. [Google Scholar] [CrossRef]
- Ballabio, C.; Sterlacchini, S. Support vector machines for landslide susceptibility mapping: The Staffora river basin case study, Italy. Math. Geosci. 2012, 44, 47–70. [Google Scholar] [CrossRef]
- Xu, J.C.; Ren, Q.W.; Shen, Z.Z. Sensitivity analysis of the influencing factors of slope stability based on LS-SVM. Geomech. Eng. 2017, 13, 447–458. [Google Scholar]
- Cong, M.; Yuehu, T.; Erbing, L.; Meng, Y.; Jianli, D. Allowable deformation prediction for surrounding rock of underground caverns based on support vector machine. Period. Polytech. Civ. Eng. 2016, 60, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Vapnik, V. Statistical Learning Theory; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Cao, C.; Song, S.; Chen, J.; Zheng, L.; Kong, Y. An approach to predict debris flow average velocity. Water 2017, 9, 205. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Man, T.; Jin, H. Prediction of expansion behavior of self-stressing concrete by artificial neural networks and fuzzy inference systems. Constr. Build. Mater. 2015, 84, 184–191. [Google Scholar] [CrossRef]
- Tan, L.; Wei, C.F.; Tian, H.H.; Zhou, J.Z.; Wei, H.Z. Experimental study of unfrozen water content of frozen soils by low-field nuclear magnetic resonance. Rock Soil Mech. 2015, 36, 1566–1572. [Google Scholar]
- Xu, X.Z.; Wang, J.C.; Zhang, L.X. Frozen Soil Physics; Science Press: Beijing, China, 2001. [Google Scholar]
- Anderson, D.M.; Tice, A.R. The unfrozen interfacial phase in frozen soil water systems. Phys. Asp. Soil Water Salts Ecosyst. 1973, 4, 107–124. [Google Scholar]
Salt Content/% | Temperature/°C | Initial Water Content/% |
---|---|---|
−1 | ||
−3 | ||
0 | −5 | 19 |
0.3 | −7 | 21 |
1.5 | −10 | 24 |
−15 | ||
−20 | ||
Type of salt | Sodium bicarbonate |
Initial Water Content/% | Salt Content/% | Temperature Reduction Process/°C | |||||||
---|---|---|---|---|---|---|---|---|---|
−1 | −3 | −5 | −7 | −10 | −15 | −20 | |||
19 | 0 | 16.92 | 14.96 | 9.58 | 8.90 | 8.33 | 7.78 | 7.49 | The UW/% |
19 | 0.3 | 16.12 | 14.86 | 9.78 | 8.64 | 8.24 | 7.48 | 7.22 | |
19 | 1.5 | 18.31 | 18.85 | 11.47 | 10.65 | 9.09 | 7.91 | 7.63 | |
21 | 1.5 | 20.40 | 20.79 | 12.12 | 10.56 | 9.05 | 8.31 | 7.42 | |
24 | 1.5 | 23.23 | 23.15 | 11.79 | 10.32 | 9.45 | 7.94 | 7.72 |
m | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0.52 | 0.90 | 1.12 | 1.26 | 1.36 | 1.41 | 1.46 | 1.49 |
Factors | Temperature | Initial Water Content | Salt Content | Weights |
---|---|---|---|---|
Temperature | 1 | 3 | 5 | 0.6483 |
Water Content | 1/3 | 1 | 2 | 0.2297 |
Salt Content | 1/5 | 1/2 | 1 | 0.1220 |
Heading | Temperature | Salt Content | Initial Water Content |
---|---|---|---|
Entropy | 0.94 | 0.90 | 0.72 |
Difference coefficient | 0.06 | 0.10 | 0.28 |
Weights | 0.1416 | 0.2187 | 0.6397 |
Heading | Temperature | Salt Content | Initial Water Content |
---|---|---|---|
AHP weight coefficient | 0.7330 | ||
Entropy weight coefficient | 0.2670 | ||
Combination weight | 0.5130 | 0.1478 | 0.3392 |
Method | Parameters | Coss-Validation | Mean | Standard Deviation | ||||
---|---|---|---|---|---|---|---|---|
k = 1 | k = 2 | k = 3 | k = 4 | k = 5 | ||||
AHP-entropy-ANFIS | R2 | 0.9962 | 0.9960 | 0.9922 | 0.9919 | 0.9914 | 0.9935 | 0.002 |
ANFIS | (Training) | 0.9873 | 0.9960 | 0.9923 | 0.9920 | 0.9917 | 0.9919 | 0.003 |
SVM | 0.8867 | 0.8501 | 0.8693 | 0.8545 | 0.9248 | 0.8771 | 0.030 | |
AHP-entropy-SVM | 0.8813 | 0.8864 | 0.8721 | 0.8653 | 0.9236 | 0.8857 | 0.023 | |
AHP-entropy-ANFIS | MSE | 0.10 | 0.10 | 0.17 | 0.18 | 0.17 | 0.14 | 0.040 |
ANFIS | (Training) | 0.33 | 0.10 | 0.17 | 0.18 | 0.17 | 0.19 | 0.085 |
SVM | 3.00 | 3.95 | 3.00 | 3.41 | 1.59 | 2.99 | 0.874 | |
AHP-entropy-SVM | 3.15 | 2.97 | 2.94 | 3.28 | 1.58 | 2.78 | 0.687 | |
AHP-entropy-ANFIS | p-Value | 6.20 × 10–33 | 1.06 × 10−32 | 6.51 × 10−29 | 9.61 × 10−29 | 2.07 × 10−28 | - | - |
ANFIS | (Training) | 3.53 × 10−26 | 1.00 × 10−32 | 4.94 × 10−29 | 9.10 × 10−29 | 1.46 × 10−28 | - | - |
SVM | 8.26 × 10−14 | 3.22 × 10−12 | 5.39 × 10−13 | 2.19 × 10−12 | 3.96 × 10−16 | - | - | |
AHP-entropy-SVM | 1.52 × 10−13 | 8.63 × 10−14 | 4.03 × 10−13 | 7.97 × 10−13 | 4.82 × 10−16 | - | - | |
AHP-entropy-ANFIS | R2 | 0.9642 | 0.9236 | 0.9864 | 0.9881 | 0.9837 | 0.9692 | 0.027 |
ANFIS | (Testing) | 0.8488 | 0.9238 | 0.9819 | 0.9896 | 0.9857 | 0.9460 | 0.061 |
SVM | 0.8685 | 0.7034 | 0.8817 | 0.9311 | 0.7786 | 0.8327 | 0.091 | |
AHP-entropy-SVM | 0.8706 | 0.5961 | 0.8964 | 0.9131 | 0.8001 | 0.8153 | 0.130 | |
AHP-entropy-ANFIS | MSE | 1.18 | 0.96 | 0.91 | 0.42 | 0.83 | 0.86 | 0.278 |
ANFIS | (Testing) | 2.00 | 0.96 | 0.99 | 0.49 | 0.84 | 1.05 | 0.564 |
SVM | 2.15 | 2.95 | 3.66 | 4.25 | 12.06 | 5.02 | 4.016 | |
AHP-entropy-SVM | 2.04 | 3.27 | 2.78 | 5.24 | 10.38 | 4.74 | 3.367 | |
AHP-entropy-ANFIS | p-Value | 8.33 × 10−5 | 5.64 × 10−4 | 7.31 × 10−6 | 5.30 × 10−6 | 1.15 × 10−5 | - | - |
ANFIS | (Testing) | 3.20 × 10−3 | 5.60 × 10−4 | 1.50 × 10−5 | 3.76 × 10−6 | 8.40 × 10−6 | - | - |
SVM | 2.24 × 10−3 | 1.84 × 10−2 | 1.71 × 10−3 | 4.34 × 10−4 | 8.54 × 10−3 | - | - | |
AHP-entropy-SVM | 2.15 × 10−3 | 4.20 × 10−2 | 1.22 × 10−3 | 7.80 × 10−4 | 6.56 × 10−3 | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Liu, Y.; Zhang, X.; Fu, H.; Lin, S.; Song, S.; Niu, C. Study on an AHP-Entropy-ANFIS Model for the Prediction of the Unfrozen Water Content of Sodium-Bicarbonate-Type Salinization Frozen Soil. Mathematics 2020, 8, 1209. https://doi.org/10.3390/math8081209
Wang Q, Liu Y, Zhang X, Fu H, Lin S, Song S, Niu C. Study on an AHP-Entropy-ANFIS Model for the Prediction of the Unfrozen Water Content of Sodium-Bicarbonate-Type Salinization Frozen Soil. Mathematics. 2020; 8(8):1209. https://doi.org/10.3390/math8081209
Chicago/Turabian StyleWang, Qing, Yufeng Liu, Xudong Zhang, Huicheng Fu, Sen Lin, Shengyuan Song, and Cencen Niu. 2020. "Study on an AHP-Entropy-ANFIS Model for the Prediction of the Unfrozen Water Content of Sodium-Bicarbonate-Type Salinization Frozen Soil" Mathematics 8, no. 8: 1209. https://doi.org/10.3390/math8081209
APA StyleWang, Q., Liu, Y., Zhang, X., Fu, H., Lin, S., Song, S., & Niu, C. (2020). Study on an AHP-Entropy-ANFIS Model for the Prediction of the Unfrozen Water Content of Sodium-Bicarbonate-Type Salinization Frozen Soil. Mathematics, 8(8), 1209. https://doi.org/10.3390/math8081209