Effect of Rotational Speed Modulation on the Weakly Nonlinear Heat Transfer in Walter-B Viscoelastic Fluid in the Highly Permeable Porous Medium
Abstract
:1. Introduction
2. Mathematical Formulation
3. Basic State
4. Finite Amplitude Equation and Heat Transfer
4.1. First-Order System: Linear Stability Analysis
4.2. Second-Order System
4.3. Third-Order System
5. Results and Discussion
6. Conclusions
- The effect of the modified Prandtl number is to stabilize the convective system as decreases with . This is the combined effect of elastic parameter and Taylor number.
- The effect of the increasing modified Taylor number () is to increase the heat transfer rate, and thus destabilizes the system.
- The frequency of modulation stabilizes the system while the amplitude of modulation has the opposite effect.
- The heat transport can be accelerated with an increase in the Darcy number (i.e., rise in permeability) and hence the Darcy number destabilizes the convective system.
- Nusselt number increases with an increase in for an initial short period. After that, its effect is negligible on heat transport.
- At initially (), the heat transport is in a conduction mode and, when time () increases, the conduction mode is switched into convection mode. Thus, at moderate values of time (), heat transport is carried due to convection. After , we observe that the system arrives at a steady state.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Latin Symbols | |
A | Amplitude of convection |
Amplitude of modulation | |
Gravitational acceleration, (0, 0,) | |
k | Wave number |
Velocity Vector | |
d | Depth between plates |
Nusselt Number | |
p | Pressure |
Thermal Rayleigh Number | |
Modified Taylor Number | |
Modified Pradtl Number | |
T | Temperature |
Temperature Difference across the layer | |
Darcy number | |
M | Modified thermal capacity ratio, |
Effective thermal diffusivity | |
t | Time |
Horizontal and Vertical co-ordinates | |
Ratio of heat capacities | |
Greek Symbols | |
Coefficients of Thermal expansions | |
k | Horizontal Wave Number |
Perturbation Parameter | |
Effective Thermal Diffusivity | |
Frequency of Modulation | |
Rotational Speed Vector (0,0,) | |
Dynamic Viscosity of the Fluid | |
Kinetic Viscosity | |
Fluid Density | |
Stream Function | |
Scaled time | |
porosity | |
Heat capacity ratio | |
Viscoelastic constant of Walter B liquid | |
Elastic parameter, | |
Subscripts | |
b | Basic state |
0 | Critical |
* | Non-dimensional value |
Superscripts | |
perturbed quantity |
References
- Ingham, D.B.; Pop, I. Transport Phenomena in Porous Media, 1st ed.; Pergamon: Oxford, UK, 1998. [Google Scholar]
- Ingham, D.B.; Pop, I. Transport Phenomena in Porous Media, 3rd ed.; Elsevier: Oxford, UK, 2005. [Google Scholar]
- Vafai, K. (Ed.) Handbook of Porous Media; Marcel Dekker: New York, NY, USA, 2000. [Google Scholar]
- Vafai, K. (Ed.) Handbook of Porous Media, 2nd ed.; Taylor and Francis (CRC): Boca Raton, FL, USA, 2005. [Google Scholar]
- Nield, D.A.; Bejan, A. Convection in Porous Media, 3rd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Beg, O.A.; Makinde, O.D. Viscoelastic flow and species transfer in a Darcian high-permeability channel. J. Pet. Sci. Eng. 2011, 76, 93–99. [Google Scholar] [CrossRef]
- Malashetty, M.S.; Basavaraja, D. The effect of thermal/gravity modulation on the onset of convection in a horizontal anisotropic porous layer. Int. J. Appl. Mech. Eng. 2003, 8, 425–439. [Google Scholar]
- Shivakumara, I.S.; Nanjundappa, C.E.; Chavaraddi, K.B. Darcy-Benard-Marangoni convection in porous media. Int. J. Heat Mass Transf. 2009, 52, 2815–2823. [Google Scholar] [CrossRef]
- Shivakumara, I.S.; Malashetty, M.S.; Chavaraddi, K.B. Onset of convection in a viscoelastic-fluid-saturated sparsely packed porous layer using a thermal nonequilibrium model. Can. J. Phys. 2006, 84, 973–990. [Google Scholar] [CrossRef]
- Postelnicu, A. Thermal Hydrodynamic Instability of a Walters B Viscoelastic Fluid in a Fluid-Saturated Anisotropic Porous Medium with Fast Chemical Reaction; Eurotherm Seminar Reactive Heat Transfer in Porous Media: Ecole des Mines d’Albi, France, 2007; pp. 1–8. [Google Scholar]
- Shivakumara, I.S.; Sureshkumar, S. Convective instabilities in a viscoelastic-fluid-saturated porous medium with throughflow. J. Geophys. Eng. 2007, 4, 104–115. [Google Scholar] [CrossRef]
- Malashetty, M.S.; Swamy, M.S.; Sidram, W. Thermal convection in a rotating viscoelastic fluid saturated porous layer. Int. J. Heat Mass Transf. 2010, 53, 5747–5756. [Google Scholar] [CrossRef]
- Bénard, H. Les tourbillions cellulaires dans une nappe liquide transportant de la chaleur par convection en régime permanent. Annal. Chim. Phys. 1901, 23, 62–144. [Google Scholar]
- Taylor, G.I. Motion of solids in fluids when the flow is not irrotational. Proc. R. Soc. Lond. A 1917, 93, 99–113. [Google Scholar]
- Taylor, G.I. Experiments with rotating fluids. Proc. R. Soc. Lond. A 1921, 100, 114–121. [Google Scholar]
- Taylor, G.I. The motion of a sphere in a rotating liquid. Proc. R. Soc. Lond. A 1922, 102, 180–189. [Google Scholar]
- Donnelly, R.J. Experiments on the stability of viscous flow between rotating cylinders enhancement of stability by modulation. Proc. R. Soc. Lond. A 1964, 281, 130–139. [Google Scholar]
- Rauscher, J.W.; Kelly, R.E. Effect of modulation on the onset of thermal convection in a rotating fluid. Int. J. Heat Mass Transf. 1975, 18, 1216–1217. [Google Scholar] [CrossRef]
- Ahlers, G.; Hohenberg, P.C.; Lucke, M. Thermal convection under external modulation of the driving force. I. The Lorenz model. Phys. Rev. A 1985, 32, 3493–3518. [Google Scholar] [CrossRef] [PubMed]
- Niemela, J.J.; Donnelly, R.J. Direct transition to turbulence in rotating Bénard convection. Phys. Rev. Lett. 1986, 57, 2524–2527. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.J.; Donnelly, R.J. Taylor-Couette flow with periodically corotated and counterrotated cylinders. Phys. Rev. Let. 1988, 60, 700–703. [Google Scholar] [CrossRef] [PubMed]
- Bhadauria, B.S.; Kiran, P. Effect of rotational speed modulation on heat transport in a fluid layer with temperature dependent viscosity and internal heat source. J. Ain Shams Eng. 2014, 5, 1287–1297. [Google Scholar] [CrossRef]
- Gupta, V.K.; Kumar, A.; Singh, A.K. Analytical study of weakly nonlinear mass transfer in rotating fluid layer under time-periodic concentration/gravity modulation. Int. J. Non-Linear Mech. 2017, 97, 22–29. [Google Scholar] [CrossRef]
- Gupta, V.K. Study of mass transport in rotating couple stress liquid under concentration modulation. Chin. J. Phys. 2018, 56, 911–921. [Google Scholar] [CrossRef]
- Drury, J.A.; Murphy, S.J.; Derekas, A.; Sódor, A.; Stello, D.; Kuehn, C.A.; Bedding, T.R.; Bognár, Z.; Szigetr, L.; Szakáts, R.; et al. Large amplitude change in spot-induced rotational modulation of the kepler ap star kic2569073. Mon. Not. R. Astron. Soc. Sol. Stellar Astrophys. 2017, 471, 3193–3199. [Google Scholar] [CrossRef] [Green Version]
- Bowman, D.M.; Buysschaert, B.; Neiner, C.; Pápics, P.I.; Oksala, M.E.; Aerts, C. K2 space photometry reveals rotational modulation and stellar pulsations in chemically peculiar a and b stars. Astron. Astrophys. 2018, 616, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Keshri, O.P.; Kumar, A.; Gupta, V.K. Magento-solutal convection in Newtonian fluid layer with solutal modulated boundaries. Int. J. Non-Linear Mech. 2018, 107, 86–93. [Google Scholar] [CrossRef]
- Keshri, O.P.; Kumar, A.; Gupta, V.K. Effect of internal heat Source on magnetostationary convection of couple stress fluid under magnetic field modulation. Chin. J. Phys. 2019, 57, 105–115. [Google Scholar] [CrossRef]
- Keshri, O.P.; Gupta, V.K.; Kumar, A. Study of weakly nonlinear mass transport in Newtonian fluid with applied magnetic field under concentration/gravity modulation. Nonlinear Engg. 2019, 8, 513–522. [Google Scholar] [CrossRef]
- Kumar, A.; Gupta, V.K. Study of heat and mass transport in couple stress liquid under G-gitter effect. Ain Shams Eng. J. 2018, 9, 973–984. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.G.; Joon, K.B.; Sukyoon, L.; Bin, K.S.; Tackeun, K.; Hee-Joon, B.; Seung, B.J.; O-Ki, K.; Wan, O.C.; MOON-KU, H. Therapeutic temperature modulation against penumbral tissue loss in ischemic stroke. Crit. Care Med. 2020, 48, 353. [Google Scholar] [CrossRef]
- Tahir, M.; Riaz, S.; Hussain, S.S.; Awan, A.; Xu, Y.B.; Naseem, S. Solvent mediated phase stability and temperature dependent magnetic modulation in BiFeO3 nanoparticles. J. Magn. Magn. Mater. 2020, 503, 166563. [Google Scholar] [CrossRef]
- Saravanan, S.; Kousalya, M. On the onset of gravity modulated filtration convection in grade fluids via Mathieu functions. ASME J. Heat Transf. 2020, 142, 092701. [Google Scholar] [CrossRef]
- Roth, S.; Zander, I.; Michelson, Y.; Ben-David, Y.; Banin, E.; Danielli, A. Identification of protein-protein interactions using a magnetic modulation biosensing system. Sens. Actuators B Chem. 2020, 303, 127228. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Seth, G.S.; Kumar, R.; Chamkha, A.J. Simulation of Cattaneo—Christov heat flux on the flow of single and multi-walled carbon nanotubes between two stretchable coaxial rotating disks. J. Therm. Anal. Calorim. 2020, 139, 1655–1670. [Google Scholar] [CrossRef]
- Tayebi, T.; Chamkha, A.J. Entropy generation analysis during MHD natural convection flow of hybrid nanofluid in a square cavity containing a corrugated conducting block. Int. J. Numer. Methods Heat Fluid Flow 2019, 30, 1115–1136. [Google Scholar] [CrossRef]
- Herbert, D.M. On the stability of viscoelastic liquids in heated plane Couette flow. J. Fluid Mech. 1963, 17, 353–359. [Google Scholar] [CrossRef]
- Vest, C.M.; Arpaci, V.S. Overstability of a viscoelastic fluid layer heated from below. J. Fluid Mech. 1969, 36, 613–623. [Google Scholar] [CrossRef]
- Bhatnagar, K.; Giesekus, H. On the stability of viscoelastic fluid flow—II. Rheol. Acta 1970, 9, 53–60. [Google Scholar] [CrossRef]
- Comissiong, D.M.G.; Dass, T.D.; Ramkissoon, H.; Sankar, A.R. On thermal instabilities in a viscoelastic fluid subject to internal heat generation. Int. J. Math. Comput. Sci. 2011, 56, 826–833. [Google Scholar]
- Shivakumara, S.; Lee, J.; Malashetty, M.S.; Sureshkumar, S. Effect of thermal modulation on the onset of convection in walters-B viscoelastic fluid-saturated porous medium. Trans. Porous Media 2011, 87, 291–307. [Google Scholar] [CrossRef] [Green Version]
- Sheu, L.J. Linear stability of convection in a viscoelastic nanofluid layer, World Academy of Science. Eng. Technol. 2011, 58, 10–22. [Google Scholar]
- Rajib, B.; Layek, G.C. The onset of thermo convection in a horizontal viscoelastic fluid layer heated underneath. Therm. Energy Power Eng. 2012, 1, 1–9. [Google Scholar]
- Bhadauria, B.S.; Kiran, P. Weak nonlinear oscillatory convection in a viscoelastic fluid layer under gravity modulation. Int. J. Nonlinear Mech. 2014, 65, 133–140. [Google Scholar] [CrossRef]
- Bhadauria, B.S.; Kiran, P. Weakly nonlinear oscillatory convection in a viscoelastic fluid saturating porous medium under temperature modulation. Int. J. Heat Mass Transf. 2014, 77, 843–851. [Google Scholar] [CrossRef]
- Bhadauria, B.S.; Kiran, P. Weak nonlinear oscillatory convection in a viscoelastic fluid-saturated porous medium under gravity modulation. Trans. Porous Media 2014, 104, 451–467. [Google Scholar] [CrossRef]
- Bhadauria, B.S.; Kiran, P. Chaotic and oscillatory magneto-convection in a binary viscoelastic fluid under G-jitter. Int. J. Heat Mass Transf. 2015, 84, 610–624. [Google Scholar] [CrossRef]
- Bhadauria, B.S. Chaotic convection in a viscoelastic fluid saturated porous medium with a heat source. J. Appl. Math. 2016, 1487616. [Google Scholar] [CrossRef] [Green Version]
- Landau, L.D. On the problem of turbulence. Dokl. Akad. Nauk SSSR 1944, 44, 339–349. [Google Scholar]
- Drazin, P.G.; Reid, W.H. Hydrodynamic Stability, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Stuart, J.T. On the nonlinear mechanics of hydrodynamic stability. J. Fluid Mech. 1958, 4, 1–21. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics-Part (2); Pergamon Press Ltd.: Oxford, UK, 1969. [Google Scholar]
- Vadasz, P. Heat transfer and fluid flow in rotating porous media. Dev. Water Sci. 2002, 47, 469–476. [Google Scholar]
- Gupta, V.K.; Bhadauria, B.S.; Hashim, I.; Jawdat, J.; Singh, A.K. Chaotic convection in rotating fluid layer. Alex. Eng. J. 2015, 54, 981–992. [Google Scholar] [CrossRef] [Green Version]
- Lapwood, E.R. Convection of a fluid in a porous medium. Mathe. Proc. Camb. Philos. Soc. 1948, 44, 508–521. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, A.; Gupta, V.K.; Meena, N.; Hashim, I. Effect of Rotational Speed Modulation on the Weakly Nonlinear Heat Transfer in Walter-B Viscoelastic Fluid in the Highly Permeable Porous Medium. Mathematics 2020, 8, 1448. https://doi.org/10.3390/math8091448
Kumar A, Gupta VK, Meena N, Hashim I. Effect of Rotational Speed Modulation on the Weakly Nonlinear Heat Transfer in Walter-B Viscoelastic Fluid in the Highly Permeable Porous Medium. Mathematics. 2020; 8(9):1448. https://doi.org/10.3390/math8091448
Chicago/Turabian StyleKumar, Anand, Vinod K. Gupta, Neetu Meena, and Ishak Hashim. 2020. "Effect of Rotational Speed Modulation on the Weakly Nonlinear Heat Transfer in Walter-B Viscoelastic Fluid in the Highly Permeable Porous Medium" Mathematics 8, no. 9: 1448. https://doi.org/10.3390/math8091448
APA StyleKumar, A., Gupta, V. K., Meena, N., & Hashim, I. (2020). Effect of Rotational Speed Modulation on the Weakly Nonlinear Heat Transfer in Walter-B Viscoelastic Fluid in the Highly Permeable Porous Medium. Mathematics, 8(9), 1448. https://doi.org/10.3390/math8091448