Insights into Exploration and Exploitation Power of Optimization Algorithm Using DSCTool
Abstract
:1. Introduction
- An application of DSCTool with emphasis on making extended Deep Statistical Comparison analysis to compare exploration and exploitation abilities between different optimization algorithms.
- Providing more insights into the algorithm’s exploration and exploitation abilities during the optimization process and not only at the end.
- Application of the extended Deep Statistical Comparison approach for understanding contributions of different hyperparameters on algorithm’s exploration and exploitation abilities.
2. Related Work
2.1. Extended Deep Statistical Comparison Approach
Algorithm 1 eDSC approach |
|
- The compared algorithms are not statistically significant with regard to the obtained solutions values (from DSC ranking scheme) and their distribution (from eDSC ranking scheme). Compared algorithms have the same exploration and exploitation abilities.
- There is no statistical significance between the performances of the compared algorithms with regard to the DSC ranking scheme, but there is a statistical significance with respect to the eDSC ranking scheme. The compared algorithms differ only in exploration abilities.
- There is a statistical significance between the compared algorithms with regard to the DSC ranking scheme, but there is no statistical significance with respect to eDSC ranking scheme. The compared algorithms differ only in exploitation abilities.
- The compared algorithms have statistically significant performance with regard to DSC and eDSC ranking schemes. The compared algorithms differ only in exploration abilities, while nothing can be said about exploitation abilities.
2.2. The DSCtool
3. Experiments
Algorithm 2 Differential Evolution Algorithm |
Input: , F, , Output: best solution
|
3.1. Comparison Made with Regard to the Obtained Solutions Values (i.e., DSC Ranking Scheme)
3.2. Comparison Made with Regard to the Distribution of the Obtained Solutions in the Search Space (i.e., eDSC Ranking Scheme)
3.3. Results and Discussion
- D*1000 Function Evaluations:
- D*10,000 Function Evaluations:
- D*100,000 Function Evaluations:
- D*1,000,000 Function Evaluations:
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DSC | deep statistical comparison |
eDSC | extended deep statistical comparison |
KS | Kolmogorov–Smirnov |
AD | Anderson–Darling |
FE | function evaluation |
DE | differential evolution |
JSON | JavaScript object notation |
URI | uniform resource identifier |
References
- Back, T. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Črepinšek, M.; Liu, S.H.; Mernik, M. Exploration and exploitation in evolutionary algorithms: A survey. ACM Comput. Surv. (CSUR) 2013, 45, 1–33. [Google Scholar] [CrossRef]
- Eftimov, T.; Korošec, P. A Novel Statistical Approach for Comparing Meta-heuristic Stochastic Optimization Algorithms According to the Distribution of Solutions in the Search Space. Inf. Sci. 2019, 489, 255–273. [Google Scholar] [CrossRef]
- Eftimov, T.; Petelin, G.; Korošec, P. DSCTool: A web-service-based framework for statistical comparison of stochastic optimization algorithms. Appl. Soft Comput. 2020, 87, 105977. [Google Scholar] [CrossRef]
- Elhara, O.; Varelas, K.; Nguyen, D.; Tusar, T.; Brockhoff, D.; Hansen, N.; Auger, A. COCO: The Large Scale Black-Box Optimization Benchmarking (bbob-largescale) Test Suite. arXiv 2019, arXiv:1903.06396. [Google Scholar]
- Liang, J.J.; Qu, B.Y.; Suganthan, P.N.; Hernández-Díaz, A.G. Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Optimization; Zhengzhou China and Technical Report; Computational Intelligence Laboratory, Zhengzhou University: Zhengzhou, China; Nanyang Technological University: Singapore, 2013. [Google Scholar]
- Liang, J.J.; Qu, B.Y.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization; Zhengzhou China and Technical Report; Computational Intelligence Laboratory, Zhengzhou University: Zhengzhou, China; Nanyang Technological University: Singapore, 2014. [Google Scholar]
- Liang, J.J.; Qu, B.Y.; Suganthan, P.N.; Chen, Q. Problem Definitions and Evaluation Criteria for the CEC 2015 Competition on Learning-Based Real-Parameter Single Objective Optimization; Zhengzhou China and Technical Report; Computational Intelligence Laboratory, Zhengzhou University: Zhengzhou, China; Nanyang Technological University: Singapore, 2014. [Google Scholar]
- Hansen, N.; Auger, A.; Brockhoff, D.; Tusar, D.; Tušar, T. COCO: Performance Assessment. arXiv 2016, arXiv:1605.03560. [Google Scholar]
- López-Ibáñez, M.; Dubois-Lacoste, J.; Pérez Cáceres, L.; Stützle, T.; Birattari, M. The irace package: Iterated Racing for Automatic Algorithm Configuration. Oper. Res. Perspect. 2016, 3, 43–58. [Google Scholar] [CrossRef]
- Bartz-Beielstein, T.; Stork, J.; Zaefferer, M.; Rebolledo, M.; Lasarczyk, C.; Ziegenhirt, J.; Konen, W.; Flasch, O.; Koch, P.; Friese, M. Package ‘SPOT’ 2019. Available online: https://mran.microsoft.com/snapshot/2016-08-05/web/packages/SPOT/SPOT.pdf (accessed on 9 June 2016).
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Eftimov, T.; Korošec, P.; Seljak, B.K. A novel approach to statistical comparison of meta-heuristic stochastic optimization algorithms using deep statistics. Inf. Sci. 2017, 417, 186–215. [Google Scholar] [CrossRef]
- Székely, G.J.; Rizzo, M.L. Testing for equal distributions in high dimension. InterStat 2004, 5, 1–6. [Google Scholar]
- Hansen, N.; Finck, S.; Ros, R.; Auger, A. Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions; HAL: Lyon, France, 2009. [Google Scholar]
- Eftimov, T.; Korošec, P. The impact of statistics for benchmarking in evolutionary computation research. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Kyoto, Japan, 15–19 July 2018; pp. 1329–1336. [Google Scholar]
- García, S.; Molina, D.; Lozano, M.; Herrera, F. A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: A case study on the CEC’2005 special session on real parameter optimization. J. Heuristics 2009, 15, 617. [Google Scholar] [CrossRef]
Denotation | Strategy (Equation) | F | Cr |
---|---|---|---|
DE1 | rand/2/bin () | 0.377 | 0.379 |
DE2 | best/1/exp () | 0.450 | 0.664 |
DE3 | rand/1/exp () | 0.994 | 0.658 |
Algorithm | DE1 | DE2 | DE3 |
---|---|---|---|
DE1 | / | −(1.00)|−(1.00) | +(0.00)|+(0.00) |
DE2 | +(0.00)|+(0.00) | / | +(0.00)|+(0.00) |
DE3 | −(1.00)|−(1.00) | −(1.00)|−(1.00) | / |
Algorithm | DE1 | DE2 | DE3 |
---|---|---|---|
DE1 | / | −(0.97)|+(0.00) | +(0.00)|+(0.00) |
DE2 | +(0.03)|−(1.00) | / | +(0.00)|+(0.00) |
DE3 | −(1.00)|−(1.00) | −(1.00)|−(1.00) | / |
Algorithm | DE1 | DE2 | DE3 |
---|---|---|---|
DE1 | / | −(0.98)|+(0.00) | +(0.00)|+(0.00) |
DE2 | +(0.02)|−(1.00) | / | +(0.00)|+(0.00) |
DE3 | −(1.00)|−(1.00) | −(1.00)|−(1.00) | / |
Algorithm | DE1 | DE2 | DE3 |
---|---|---|---|
DE1 | / | +(0.00)|+(0.00) | +(0.00)|+(0.00) |
DE2 | −(1.00)|−(1.00) | / | +(0.00)|−(0.06) |
DE3 | −(1.00)|−(1.00) | −(1.00)|−(0.94) | / |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korošec, P.; Eftimov, T. Insights into Exploration and Exploitation Power of Optimization Algorithm Using DSCTool. Mathematics 2020, 8, 1474. https://doi.org/10.3390/math8091474
Korošec P, Eftimov T. Insights into Exploration and Exploitation Power of Optimization Algorithm Using DSCTool. Mathematics. 2020; 8(9):1474. https://doi.org/10.3390/math8091474
Chicago/Turabian StyleKorošec, Peter, and Tome Eftimov. 2020. "Insights into Exploration and Exploitation Power of Optimization Algorithm Using DSCTool" Mathematics 8, no. 9: 1474. https://doi.org/10.3390/math8091474
APA StyleKorošec, P., & Eftimov, T. (2020). Insights into Exploration and Exploitation Power of Optimization Algorithm Using DSCTool. Mathematics, 8(9), 1474. https://doi.org/10.3390/math8091474