Nonlinear Profile Monitoring Using Spline Functions
Abstract
:1. Introduction
2. The B-Spline Approximation and Control Charts
2.1. B-Spline Approximation
- (i)
- Partition of unity: .
- (ii)
- Positivity: .
- (iii)
- Local support: if .
- (iv)
- Continuity: the th derivation of is continuous.
- Step 1:
- Use a cubic B-spline to approximate in Model (1) and obtain the estimates of spline coefficients and the predicted value of , for , .
- Step 2:
- The residuals can be obtained by , . Treat the residuals , from the jth profile as a random sample from and find the maximum likelihood estimates (MLEs) of and for each profile and denoted them by and , respectively, for . Let , . Then a multivariate control chart can be constructed based on the Phase I sample , .
2.2. The New Proposed Methods
- Step 1:
- Obtain the initial value of by
- Step 2:
- For iteration , search the value of that satisfies Equation (15), given :
- Step (a):
- Let initial value of be .
- Step (b):
- Evaluate the value of by .
- Step (c):
- Choose the value of such that the condition is true by using Cholesky decomposition method for the positive definite matrix .
- Stpe (d):
- Update by
- Stpe (e):
- Repeat the Steps (b) to (d) until convergence.
- Step 3:
- Update by ,
- Step 4:
- Let . Repeat Step 2 to Step 3 until
- Step 1:
- Obtain the estimates of and the residuals based on m in-control Phase I subgroups by using the proposed estimation method in Section 2.1.
- Step 2:
- Step 3:
- The first control chart in the integrated control chart can be the Hotelling chart or MSEWMA chart. The second control chart in the integrated control chart is the MAE chart. Let the FAR in the first and second control charts are and , respectively, and the overall FAR is .
- Step 3.1:
- The control limits in Equations (9) and (10) with can be used to establish the Hotelling .
- Step 3.2:
- The control limit of the MSEWMA chart with can be selected from the tables proposed by Zou and Tsung [13] or we can search the control limit via using simulation methods.
- Step 3.3:
- The quantile, , based on the empirical distribution of can be obtained as the control limit of MAE chart.
- Step 4:
- The -MAE chart is to integrate the Hotelling and MAE charts in Step 3 and the MS-MAE chart is to integrate the MSEWMA and MAE charts in Step 3.
3. Monte Carlo Simulations and Discussions
3.1. Performance Evaluation
- Shift 1:
- Shift 2:
- Shift 3:
- Shift 4:
- Shift 5:
- Shift 6:
- Shift 7:
- Shift 8:
- Shift 9:
- Shift 10:
3.2. Discussions
4. An Application
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
response variables | |
explanatory variables | |
nonlinear function | |
random error | |
the number of points in profile j | |
probability density function | |
, , | the location, scale and skewness parameters of the SND |
, | real number and positive real number |
control point in B-spline function | |
t, | non-decreasing knots |
d | the order of basis function |
the basis function of order d in B-spline function | |
the end points of an interval | |
the predicted value of | |
residuals | |
m | the number of subgroups in Phase I |
the vector of | |
The control limit of the control chart based on Hotelling statistics | |
, | false alarm rates |
p | the dimension of an input vector |
the upper th quantile of the beta distribution with degrees of freedom and | |
the upper th quantile of the F distribution with degrees of freedom p and | |
the upper th quantile of the chi-square distribution with degrees of freedom p | |
, | MSEWMA series |
, | a matrix of unknown constants to construct a MSEWMA series and the estimate of |
, , | the constants in MSEWMA series and the estimate of |
identity matrix of order p | |
, | matrices to obtain and |
, | vector to obtain |
e | a threshold of error to reach convergence |
the upper th quantile of the sampling distribution of | |
the coefficients of for VDP data | |
, | coefficients in the cubic B-spline model for VDP data; |
References
- Montgomery, D.C. Statistical Quality Control: A Modern Introduction, 7th ed.; John Wiley & Suns, Ltd.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Chang, S.I.; Yadama, S. Statistical process control for monitoring non-linear profiles using wavelet filtering and B-Spline approximation. Int. J. Prod. Res. 2010, 48, 1049–1068. [Google Scholar] [CrossRef]
- Chuang, S.-C.; Hung, Y.-C.; Tsai, W.-C.; Yang, S.-F. A framework for nonparametric profile monitoring. Comput. Ind. Eng. 2013, 64, 482–491. [Google Scholar] [CrossRef]
- Winistorfer, P.; Young, T.; Walker, E. Modeling and comparing vertical density profiles. Wood Fiber Sci. 1996, 28, 133–141. [Google Scholar]
- Woodall, W.H.; Spitzner, D.J.; Montgomery, D.C.; Gupta, S. Using control charts to monitor process and product quality profiles. J. Qual. Technol. 2004, 36, 309–320. [Google Scholar] [CrossRef]
- Chang, S.I.; Chou, S.H. A study of using Wavelet transformation and B-spline approximation for nonlinear profiles monitoring. In Proceedings of the 2009 Industrial Engineering Research Conference (IERC), Miami, FL, USA, 30 May–3 June 2009; pp. 1567–1572. [Google Scholar]
- Hadidoust, Z.; Samimi, Y.; Shahriari, H. Monitoring and change-point estimation for spline-modeled non-linear profiles in phase II. J. Appl. Stat. 2015, 42, 2520–2530. [Google Scholar] [CrossRef]
- Fan, S.-K.; Chang, Y.-J.; Aidara, N. Nonlinear profile monitoring of reflow process data based on the sum of sine functions. Qual. Reliab. Eng. Int. 2013, 29, 743–758. [Google Scholar] [CrossRef]
- Shiau, J.-J.H.; Huang, H.-L.; Lin, S.-H.; Tsai, M.-Y. Monitoring nonlinear profiles with random effects by nonparametric regression. Commun. Stat. Theory Methods 2009, 38, 1664–1679. [Google Scholar] [CrossRef]
- Vaghefi, A.; Tajbakhsh, S.D.; Noorossana, R. Phase II monitoring of nonlinear profiles. Commun. Stat. Theory Methods 2009, 38, 1834–1851. [Google Scholar] [CrossRef]
- Williams, J.D.; Woodall, W.H.; Birch, J.B. Statistical monitoring of nonlinear product and process quality profiles. Qual. Reliab. Eng. Int. 2007, 23, 925–941. [Google Scholar] [CrossRef] [Green Version]
- Boullosa-Falces, D.; Barrena, J.L.L.; Lopez-Arraiza, A.; Menendez, J.; Solaetxe, M.A.G. Monitoring of fuel oil process of marine diesel engine. Appl. Therm. Eng. 2017, 127, 517–526. [Google Scholar] [CrossRef]
- Zou, C.; Tsung, F. A multivariate sign EWMA control chart. Technometrics 2011, 53, 84–97. [Google Scholar] [CrossRef]
- Zi, X.; Zou, C.; Tsung, F. A distribution-free robust method for monitoring linear profiles using rank-based regression. IIE Trans. 2012, 44, 949–963. [Google Scholar] [CrossRef]
- Azzalini, A. A class of distributions which includes the normal ones. Scand. J. Stat. 1985, 12, 171–178. [Google Scholar]
- Su, N.-C.; Gupta, A.K. On some sampling distributions for skew-normal population. J. Stat. Comput. Simul. 2015, 85, 3549–3559. [Google Scholar] [CrossRef]
- Tsai, T.-R. Skew Normal Distribution and the design of control charts for averages. Int. J. Reliab. Qual. Saf. Eng. 2007, 14, 49–63. [Google Scholar] [CrossRef]
- Li, C.-I.; Su, N.-C.; Su, P.-F.; Shyr, Y. The design of X¯ and R control charts for skew normal distributed data. Commun. Stat. Theory Methods 2014, 43, 4908–4924. [Google Scholar] [CrossRef]
- Su, N.-C.; Chiang, J.-Y.; Chen, S.-C.; Tsai, T.-R.; Shyr, Y. Economic design of two-stage control charts with skewed and dependent measurements. Int. J. Adv. Manuf. Technol. 2014, 73, 1387–1397. [Google Scholar] [CrossRef]
- Li, C.-I.; Tsai, T.-R. Linear profiles monitoring in the presence of nonnormal random errors. Qual. Eng. Int. 2019, 35, 2579–2592. [Google Scholar] [CrossRef]
- de Boor, C. A Practical Guide to Spline, rev. ed.; springer: Berlin, Germany, 2003; ISBN 0-387-95366-3. [Google Scholar]
- Perperoglou, A.; Sauerbrei, W.; Abrahamowicz, M.; Schmid, M. A review of spline function procedures in R. BMC Med. Res. Methodol. 2019, 19, 19–46. [Google Scholar] [CrossRef] [Green Version]
- Hettmansperger, T.P.; Randies, R.H. A practical affine equivariant multivariate median. Biometrika 2002, 89, 851–860. [Google Scholar] [CrossRef]
- Tyler, D.E. A distribution-free M-estimator of multivariate scatter. Ann. Stat. 1987, 15, 234–251. [Google Scholar] [CrossRef]
- Noorossana, R.; Saghaei, A.; Amiri, A. Statistical Analysis of Profile Monitoring; Wiley: Hoboken, NY, USA, 2011; ISBN 9780470903223. [Google Scholar]
(1,1) | (1,3) | (3,1) | (3,3) | (5,1) | (5,3) | ||
---|---|---|---|---|---|---|---|
Shift 1 | ARL1 | 3.8412 | 2.3802 | 7.7024 | 13.1864 | 12.2773 | 40.5034 |
SDRL | 2.2930 | 0.7246 | 1.3110 | 4.3776 | 4.9731 | 30.9255 | |
Shift 2 | ARL1 | 2.0835 | 2.0009 | 7.4032 | 10.7722 | 11.7010 | 29.1175 |
SDRL | 0.3009 | 0.0300 | 1.6210 | 4.9118 | 5.0599 | 23.0682 | |
Shift 3 | ARL1 | 2.0289 | 2.0005 | 7.2282 | 9.5635 | 11.4067 | 26.2756 |
SDRL | 0.1757 | 0.0224 | 1.7408 | 4.8439 | 5.0496 | 20.6749 | |
Shift 4 | ARL1 | 2.0840 | 2.0017 | 7.4103 | 10.6689 | 11.5696 | 29.1012 |
SDRL | 0.3046 | 0.0412 | 1.6292 | 4.8818 | 5.0152 | 23.1551 | |
Shift 5 | ARL1 | 3.3459 | 2.2565 | 7.6737 | 13.0108 | 12.2735 | 39.3576 |
SDRL | 1.7959 | 0.5686 | 1.3659 | 4.4637 | 5.0878 | 30.4337 | |
Shift 6 | ARL1 | 3.8125 | 2.3554 | 7.6941 | 13.2833 | 12.3074 | 40.7550 |
SDRL | 2.2551 | 0.6813 | 1.2853 | 4.3092 | 4.9909 | 31.5401 | |
Shift 7 | ARL1 | 2.0853 | 2.0018 | 7.3737 | 10.7119 | 11.7145 | 30.4102 |
SDRL | 0.3020 | 0.0424 | 1.6213 | 4.8313 | 5.1583 | 23.8104 | |
Shift 8 | ARL1 | 2.0331 | 2.0003 | 7.2480 | 9.5152 | 11.4173 | 27.1037 |
SDRL | 0.1866 | 0.0173 | 1.7236 | 4.7609 | 5.0859 | 21.2876 | |
Shift 9 | ARL1 | 2.0797 | 2.0023 | 7.3797 | 10.7447 | 11.6904 | 30.7924 |
SDRL | 0.2939 | 0.0479 | 1.6091 | 4.8852 | 5.0775 | 23.7903 | |
Shift 10 | ARL1 | 3.3841 | 2.2383 | 7.6936 | 13.2156 | 12.2797 | 40.9350 |
SDRL | 1.7945 | 0.5373 | 1.3583 | 4.4369 | 5.0288 | 31.8419 |
(1,1) | (1,3) | (3,1) | (3,3) | (5,1) | (5,3) | ||
---|---|---|---|---|---|---|---|
Shift 1 | ARL1 | 4.1565 | 2.6312 | 6.4459 | 11.9355 | 15.2565 | 44.0534 |
SDRL | 2.6307 | 1.0141 | 1.4416 | 5.7643 | 8.7400 | 38.9507 | |
Shift 2 | ARL1 | 2.1123 | 2.0045 | 6.0158 | 8.5698 | 14.5249 | 28.9411 |
SDRL | 0.3520 | 0.0669 | 1.7091 | 4.8396 | 8.3630 | 25.5944 | |
Shift 3 | ARL1 | 2.0360 | 2.0004 | 5.7817 | 7.3016 | 14.2728 | 24.3020 |
SDRL | 0.1932 | 0.0200 | 1.8407 | 4.4238 | 8.4304 | 21.2048 | |
Shift 4 | ARL1 | 2.1066 | 2.0047 | 6.0167 | 8.5518 | 14.5316 | 28.0087 |
SDRL | 0.3462 | 0.0684 | 1.7050 | 4.8475 | 8.2793 | 24.8782 | |
Shift 5 | ARL1 | 3.7319 | 2.4397 | 6.4609 | 11.7575 | 15.1310 | 43.0275 |
SDRL | 2.1750 | 0.7979 | 1.4777 | 5.7632 | 8.8302 | 38.6364 | |
Shift 6 | ARL1 | 4.2259 | 2.6179 | 6.4738 | 12.0545 | 15.2113 | 45.7271 |
SDRL | 2.6815 | 1.0208 | 1.4308 | 5.8186 | 8.6970 | 40.0272 | |
Shift 7 | ARL1 | 2.1157 | 2.0058 | 6.0187 | 8.5165 | 14.5941 | 29.7988 |
SDRL | 0.3607 | 0.0759 | 1.7339 | 4.8585 | 8.3315 | 26.3605 | |
Shift 8 | ARL1 | 2.0373 | 2.0006 | 5.7978 | 7.2286 | 14.3202 | 25.5466 |
SDRL | 0.1957 | 0.0245 | 1.8242 | 4.2111 | 8.1342 | 22.2157 | |
Shift 9 | ARL1 | 2.1107 | 2.0046 | 6.0441 | 8.5784 | 14.7236 | 29.8490 |
SDRL | 0.3476 | 0.0677 | 1.7032 | 4.7884 | 8.5263 | 26.1232 | |
Shift 10 | ARL1 | 3.7231 | 2.4397 | 6.4618 | 11.7864 | 15.1848 | 43.5996 |
SDRL | 2.1656 | 0.7994 | 1.4660 | 5.6724 | 8.6189 | 39.0241 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, H.; Hsieh, W.-J.; Lio, Y.; Tsai, T.-R. Nonlinear Profile Monitoring Using Spline Functions. Mathematics 2020, 8, 1588. https://doi.org/10.3390/math8091588
Xin H, Hsieh W-J, Lio Y, Tsai T-R. Nonlinear Profile Monitoring Using Spline Functions. Mathematics. 2020; 8(9):1588. https://doi.org/10.3390/math8091588
Chicago/Turabian StyleXin, Hua, Wan-Ju Hsieh, Yuhlong Lio, and Tzong-Ru Tsai. 2020. "Nonlinear Profile Monitoring Using Spline Functions" Mathematics 8, no. 9: 1588. https://doi.org/10.3390/math8091588
APA StyleXin, H., Hsieh, W. -J., Lio, Y., & Tsai, T. -R. (2020). Nonlinear Profile Monitoring Using Spline Functions. Mathematics, 8(9), 1588. https://doi.org/10.3390/math8091588