Discrete Approximation by a Dirichlet Series Connected to the Riemann Zeta-Function
Abstract
:1. Introduction
2. Statement of the Main Theorem
3. Proof of Theorem 2
4. Distance between and
5. Proof of Theorem 3
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Voronin, S.M. Theorem on the “universality” of the Riemann zeta-function. Math. USSR Izv. 1975, 9, 443–453. [Google Scholar] [CrossRef]
- Reich, A. Werteverteilung von Zetafunktionen. Arch. Math. 1980, 34, 440–451. [Google Scholar] [CrossRef]
- Bagchi, B. The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series. Ph. D. Thesis, Indian Statistical Institute, Calcutta, India, 1981. [Google Scholar]
- Pańkowski, Ł. Joint universality for dependent L-functions. Ramanujan J. 2018, 45, 181–195. [Google Scholar] [CrossRef] [Green Version]
- Mauclaire, J.-L. Universality of the Riemann zeta-function: Two remarks. Ann. Univ. Sci. Budapest. Sect. Comp. 2013, 39, 311–319. [Google Scholar]
- Laurinčikas, A.; Matsumoto, K.; Steuding, J. Discrete universality of L-functions for new forms. II. Lith. Math. J. 2016, 56, 207–218. [Google Scholar] [CrossRef]
- Laurinčikas, A. Limit Theorems for the Riemann Zeta-Function; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1996. [Google Scholar]
- Steuding, J. Value-Distribution of L-Functions; Lecture Notes Math; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2007; Volume 1877. [Google Scholar]
- Cramér, H.; Leadbetter, M.R. Stationary and Related Stochastic Processes; Willey: New York, NY, USA, 1967. [Google Scholar]
- Mergelyan, S.N. Uniform approximations to functions of a complex variable. Am. Math. Soc. Transl. 1962, 3, 294–391. [Google Scholar]
- Billingsley, P. Convergence of Probability Measures; Willey: New York, NY, USA, 1968. [Google Scholar]
- Montgomery, H.L. Topics in Multiplicative Number Theory; Lecture Notes Math; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1971; Volume 227. [Google Scholar]
- Gnedenko, B.V. Theory of Probability, 6th ed.; CRC Press: Boca Raton, FL USA; London, UK; New York, NY, USA, 1997. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laurinčikas, A.; Šiaučiūnas, D. Discrete Approximation by a Dirichlet Series Connected to the Riemann Zeta-Function. Mathematics 2021, 9, 1073. https://doi.org/10.3390/math9101073
Laurinčikas A, Šiaučiūnas D. Discrete Approximation by a Dirichlet Series Connected to the Riemann Zeta-Function. Mathematics. 2021; 9(10):1073. https://doi.org/10.3390/math9101073
Chicago/Turabian StyleLaurinčikas, Antanas, and Darius Šiaučiūnas. 2021. "Discrete Approximation by a Dirichlet Series Connected to the Riemann Zeta-Function" Mathematics 9, no. 10: 1073. https://doi.org/10.3390/math9101073
APA StyleLaurinčikas, A., & Šiaučiūnas, D. (2021). Discrete Approximation by a Dirichlet Series Connected to the Riemann Zeta-Function. Mathematics, 9(10), 1073. https://doi.org/10.3390/math9101073