SiCaSMA: An Alternative Stochastic Description via Concatenation of Markov Processes for a Class of Catalytic Systems
Abstract
:1. Introduction
- It is not necessary to define the state transition graph of the entire system. This can be a real advantage, since the state transition graph can become quite large. This holds in particular for catalytic systems in which the substrate exists in many conformations. A prominent example is post-translational modification of a protein, e.g., phosphorylation at different sites. The nodes of the transition graph correspond here to all possible configurations of substrate phosphorylation states and catalyst binding states. Due to the combinatorial complexity, this number grows rapidly even for small molecule numbers. Moreover, it is for most of those systems not possible to exploit the underlying structure of the graph.
- Intractable state transition graphs are replaced by a concatenation of much simpler graphs, resulting in lower dimensional differential equations for the CME approach. Instead of solving the conventional CME defined on the full state transition graph, one can solve the CME on these simpler graphs and concatenate the obtained solutions. This effectively enables the solution of the CME for complex systems, where it was formerly necessary to resort to simulation methods.
- The implementation of the SSA is considerably simplified.
2. Materials and Methods
Algorithm 1 SSA general scheme () |
1: Initialize and set 2: while do 3: Calculate and for 4: Draw waiting time until next reaction event from Exp 5: Draw reaction index j from discrete distribution 6: Update 7: if then 8: Update 9: end if 10: end while 11: return |
3. Results
3.1. An Intuitive Example: Linear Conversion Process
3.2. Applying SiCaSMA to a Model for DNMT1-Mediated DNA Methylation
3.3. Applying SiCaSMA to Larger Networks via the SSA
Algorithm 2 SSA DNA methylation system () |
Initialize and set 2: while do Calculate and 4: Draw independent random numbers and uniformly from Set i to be the smallest integer satisfying 6: Update if then 8: Update end if 10: end while return |
Algorithm 3 Single Catalyst SSA DNA methylation system () |
Initialize for do 3: Initialize Update end for 6: return |
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CME | Chemical Master Equation |
SSA | Stochastic Simulation Algorithm |
SiCaSMA | Single Catalyst Stochastic Modeling Approach |
DNMT1 | DNA methyltransferase 1 |
Appendix A. Proof of Equivalence of X and Y for the DNA Methylation Model
References
- Higham, D.J. Modeling and simulating chemical reactions. SIAM Rev. 2008, 50, 347–368. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, D.J. Stochastic Modelling for Systems Biology; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Schnoerr, D.; Sanguinetti, G.; Grima, R. Approximation and inference methods for stochastic biochemical kinetics—A tutorial review. J. Phys. A Math. Theor. 2017, 50, 093001. [Google Scholar] [CrossRef]
- Van Kampen, N. A power series expansion of the Master equation. Can. J. Phys. 1961, 39, 551–567. [Google Scholar] [CrossRef]
- Kampen, N.V. Stochastic Processes in Physics and Chemistry; Elsevier: North Holland, The Netherlands, 2007. [Google Scholar]
- Gillespie, D.T. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 1976, 22, 403–434. [Google Scholar] [CrossRef]
- Smadbeck, P.; Kaznessis, Y.N. A closure scheme for chemical master equations. Proc. Natl. Acad. Sci. USA 2013, 110, 14261–14265. [Google Scholar] [CrossRef] [Green Version]
- Engblom, S. Computing the moments of high dimensional solutions of the master equation. Appl. Math. Comput. 2006, 180, 498–515. [Google Scholar] [CrossRef] [Green Version]
- Munsky, B.; Khammash, M. The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 2006, 124, 044104. [Google Scholar] [CrossRef]
- Wolf, V.; Goel, R.; Mateescu, M.; Henzinger, T.A. Solving the chemical master equation using sliding windows. BMC Syst. Biol. 2010, 4, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Kazeev, V.; Khammash, M.; Nip, M.; Schwab, C. Direct solution of the chemical master equation using quantized tensor trains. PLoS Comput. Biol. 2014, 10, e1003359. [Google Scholar] [CrossRef] [Green Version]
- Elowitz, M.B.; Levine, A.J.; Siggia, E.D.; Swain, P.S. Stochastic Gene Expression in a Single Cell. Science 2007, 297, 1183–1186. [Google Scholar] [CrossRef] [Green Version]
- Paulsson, J. Models of stochastic gene expression. Phys. Life Rev. 2005, 2, 157–175. [Google Scholar] [CrossRef]
- Bressloff, P.C.; Newby, J.M. Stochastic models of intracellular transport. Rev. Mod. Phys. 2013, 85, 135–196. [Google Scholar] [CrossRef] [Green Version]
- Birtwistle, M.R.; Rauch, J.; Kiyatkin, A.; Aksamitiene, E.; Dobrzyński, M.; Hoek, J.B.; Kolch, W.; Ogunnaike, B.A.; Kholodenko, B.N. Emergence of bimodal cell population responses from the interplay between analog single-cell signaling and protein expression noise. BMC Syst. Biol. 2012, 6. [Google Scholar] [CrossRef] [Green Version]
- Smolen, P.; Baxter, D.; Byrne, J. Bistable MAP kinase activity: A plausible mechanism contributing to maintenance of late long-term potentiation. Am. J. Physiol. Cell. Physiol. 2008, 294, C503–C515. [Google Scholar] [CrossRef] [PubMed]
- Ueda, M.; Shibata, T. Stochastic Signal Processing and Transduction in Chemotactic Response of Eukaryotic Cells. Biophys. J. 2007, 93, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Adam, S.; Anteneh, H.; Hornisch, M.; Wagner, V.; Lu, J.; Radde, N.E.; Bashtrykov, P.; Song, J.; Jeltsch, A. DNA sequence-dependent activity and base flipping mechanisms of DNMT1 regulate genome-wide DNA methylation. Nat. Commun. 2020, 11, 3723. [Google Scholar] [CrossRef] [PubMed]
- Voliotis, M.; Cohen, N.; Molina-París, C.; Liverpool, T.B. Fluctuations, pauses, and backtracking in DNA transcription. Biophys. J. 2008, 94, 334–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salazar, C.; Höfer, T. Multisite protein phosphorylation–from molecular mechanisms to kinetic models. FEBS J. 2009, 276, 3177–3198. [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F.L., Jr. Python Reference Manual; Centrum voor Wiskunde en Informatica Amsterdam: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Meurer, A.; Smith, C.P.; Paprocki, M.; Čertík, O.; Kirpichev, S.B.; Rocklin, M.; Kumar, A.; Ivanov, S.; Moore, J.K.; Singh, S.; et al. SymPy: Symbolic computing in Python. PeerJ Comput. Sci. 2017, 3, e103. [Google Scholar] [CrossRef] [Green Version]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.D. Matplotlib: A 2D graphics environment. IEEE Ann. Hist. Comput. 2007, 9, 90–95. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagner, V.; Radde, N.E. SiCaSMA: An Alternative Stochastic Description via Concatenation of Markov Processes for a Class of Catalytic Systems. Mathematics 2021, 9, 1074. https://doi.org/10.3390/math9101074
Wagner V, Radde NE. SiCaSMA: An Alternative Stochastic Description via Concatenation of Markov Processes for a Class of Catalytic Systems. Mathematics. 2021; 9(10):1074. https://doi.org/10.3390/math9101074
Chicago/Turabian StyleWagner, Vincent, and Nicole Erika Radde. 2021. "SiCaSMA: An Alternative Stochastic Description via Concatenation of Markov Processes for a Class of Catalytic Systems" Mathematics 9, no. 10: 1074. https://doi.org/10.3390/math9101074