More Effective Results for Testing Oscillation of Non-Canonical Neutral Delay Differential Equations
Abstract
:1. Introduction
- -
- They do not require unknown functions;
- -
- They do not need condition (3).
2. Main Results
- D1:
- for and
- D2:
- for and
- D3:
- for and for (note that in this case u is a Kneser solution).
3. Discussion and Examples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations; Kluwer Academic: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Second Order Dynamic Equations; Taylor & Francis: London, UK, 2003. [Google Scholar]
- Bainov, D.D.; Mishev, D.P. Oscillation Theory for Neutral Differential Equations with Delay; Adam Hilger: New York, NY, USA, 1991. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. A new approach in the study of oscillatory behavior of even-order neutral delay differential equations. Appl. Math. Comput. 2013, 225, 787–794. [Google Scholar] [CrossRef]
- Baculikova, B.; Dzurina, J. Oscillation theorems for higher order neutral differential equations. Appl. Math. Comput. 2012, 219, 3769–3778. [Google Scholar] [CrossRef]
- Baculikova, B.; Dzurina, J.; Li, T. Oscillation results for even-order quasilinear neutral functional differential equations. Electron. J. Differ. Eq. 2011, 2011, 1–9. [Google Scholar]
- Bazighifan, O.; Moaaz, O.; El-Nabulsi, R.A.; Muhib, A. Some new oscillation results for fourth-order neutral differential equations with delay argument. Symmetry 2020, 12, 1248. [Google Scholar] [CrossRef]
- Hasanbulli, M.; Rogovchenko, Y.V. Asymptotic behavior of nonoscillatory solutions to n-th order nonlinear neutral differential equations. Nonlinear Anal. 2008, 69, 1208–1218. [Google Scholar] [CrossRef]
- Li, T.; Han, Z.; Zhao, P.; Sun, S. Oscillation of even-order neutral delay differential equations. Adv. Differ. Eq. 2010, 2010, 1–9. [Google Scholar]
- Li, T.; Rogovchenko, Y.V. Oscillation criteria for even-order neutral differential equations. Appl. Math. Lett. 2016, 61, 35–41. [Google Scholar] [CrossRef]
- Xing, G.; Li, T.; Zhang, C. Oscillation of higher-order quasi-linear neutral differential equations. Adv. Differ. Eq. 2011, 2011, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zafer, A. Oscillation criteria for even order neutral differential equations. Appl. Math. Lett. 1998, 11, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Kumam, P.; Bazighifan, O. On the oscillatory behavior of a class of fourth-order nonlinear differential equation. Symmetry 2020, 12, 524. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Furuichi, S.; Muhib, A. New comparison theorems for the nth order neutral differential equations with delay inequalities. Mathematics 2020, 8, 454. [Google Scholar] [CrossRef] [Green Version]
- Ramos, H.; Bazighifan, O. A philos-type criterion to determine the oscillatory character of a class of neutral delay differential equations. Math. Meth. Appl. Sci. 2021, 1–10. [Google Scholar] [CrossRef]
- Moaaz, O.; Ramos, H.; Awrejcewicz, J. Second-order Emden–Fowler neutral differential equations: A new precise criterion for oscillation. Appl. Math. Lett. 2021, 118, 107172. [Google Scholar] [CrossRef]
- Baculikova, B.; Dzurina, J.; Graef, J.R. On the oscillation of higher-order delay differential equations. J. Math. Sci. 2012, 187, 387–400. [Google Scholar] [CrossRef]
- Moaaz, O.; Muhib, A. New oscillation criteria for nonlinear delay differential equations of fourth-order. Appl. Math. Comput. 2020, 377, 125192. [Google Scholar] [CrossRef]
- Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. New results for oscillatory behavior of even-order half-linear delay differential equations. Appl. Math. Lett. 2013, 26, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Li, T.; Suna, B.; Thandapani, E. On the oscillation of higher-order half-linear delay differential equations. Appl. Math. Lett. 2011, 24, 1618–1621. [Google Scholar] [CrossRef] [Green Version]
- Bohner, M.; Grace, S.R.; Jadlovska, I. Oscillation criteria for second-order neutral delay differential equations. Electron. Qual. Theory Differ. Eq. 2017, 2017, 60. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V. Asymptotic behavior of higher-order quasilinear neutral differential equations. Abs. Appl. Anal. 2014, 395368, 11. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Difference and Differential Equations; Kluwer Academic: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Philos, C.G. On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delays. Arch. Math. 1981, 36, 168–178. [Google Scholar] [CrossRef]
- Ladde, G.S.; Lakshmikantham, V.; Zhang, B.G. Oscillation Theory of Differential Equations with Deviating Arguments; Marcel Dekker: New York, NY, USA, 1987. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, H.; Moaaz, O.; Muhib, A.; Awrejcewicz, J. More Effective Results for Testing Oscillation of Non-Canonical Neutral Delay Differential Equations. Mathematics 2021, 9, 1114. https://doi.org/10.3390/math9101114
Ramos H, Moaaz O, Muhib A, Awrejcewicz J. More Effective Results for Testing Oscillation of Non-Canonical Neutral Delay Differential Equations. Mathematics. 2021; 9(10):1114. https://doi.org/10.3390/math9101114
Chicago/Turabian StyleRamos, Higinio, Osama Moaaz, Ali Muhib, and Jan Awrejcewicz. 2021. "More Effective Results for Testing Oscillation of Non-Canonical Neutral Delay Differential Equations" Mathematics 9, no. 10: 1114. https://doi.org/10.3390/math9101114
APA StyleRamos, H., Moaaz, O., Muhib, A., & Awrejcewicz, J. (2021). More Effective Results for Testing Oscillation of Non-Canonical Neutral Delay Differential Equations. Mathematics, 9(10), 1114. https://doi.org/10.3390/math9101114