New Cubic B-Spline Approximation for Solving Linear Two-Point Boundary-Value Problems
Abstract
:1. Introduction
2. Cubic B-Spline Functions
3. The New Approximation for
4. Description of the Numerical Method
5. Error Analysis
6. Results
6.1. Problem 1
6.2. Problem 2
6.3. Problem 3
6.4. Problem 4
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
End points of the interval | |
Step size | |
Cubic b-spline basis function | |
First derivative of the cubic b-spline basis function | |
Second derivative of the cubic b-spline basis function | |
Unknown real coefficients | |
Mesh point | |
Number of mesh points | |
Cubic b-spline approximation, | |
First-order cubic b-spline approximation, | |
Second-order cubic b-spline approximation, | |
Truncation error (order two) | |
New approximation for | |
Parameters | |
, | Constants |
Continuous function | |
Coefficient matrix of order | |
Unknown column vector | |
Column matrix of order | |
Operator notation of | |
Integer | |
Derivative with respect to | |
Truncation error (order six) | |
Truncation error (order four) | |
Truncation error (order five) | |
Error term | |
Maximum error |
References
- Wang, S.Q. A variational approach to nonlinear two-point boundary value problems. Comput. Math. Appl. 2009, 58, 2452–2455. [Google Scholar] [CrossRef] [Green Version]
- Fang, Q.; Tsuchiya, T.; Yamamoto, T. Finite difference, finite element and finite volume methods applied to two-point boundary value problems. J. Comput. Appl. Math. 2002, 139, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Shafie, S.; Majid, A.A. Approximation of Cubic B-spline Interpolation Method, Shooting and Finite Difference Methods for Linear Problems on Solving Linear Two -Point Boundary Value Problems. World Appl. Sci. J. 2012, 17, 1–9. [Google Scholar]
- Bickley, W.G. Piecewise Cubic Interpolation and Two-Point Boundary Value Problems. Comput. J. 1968, 11, 206–208. [Google Scholar] [CrossRef] [Green Version]
- Albasiny, E.L.; Hoskins, W.D. Cubic Spline solutions to two-point boundary value problems. Comput. J. 1969, 12, 151–153. [Google Scholar] [CrossRef] [Green Version]
- Fyfe, D.J. The use of cubic splines in the solution of two-point boundary value problems. Comput. J. 1968, 12, 188–192. [Google Scholar] [CrossRef] [Green Version]
- Al-Said, E.A. Cubic spline method for solving two-point boundary-value problems. J. Appl. Math. Comput. 1998, 5, 669–680. [Google Scholar] [CrossRef]
- Müllenheim, G. Solving two-point boundary value problems with spline functions. IMA J. Numer. Anal. 1992, 12, 503–518. [Google Scholar] [CrossRef]
- Khalifa, A.K.A.; Eilbeck, J.C. Collocation with quadratic and cubic splines. IMA J. Numer. Anal. 1982, 2, 111–121. [Google Scholar] [CrossRef]
- Al-Said, E.A.; Noor, M.A.; Al-Shejari, A.A. Numerical solutioons for system of second order boundary value problems. Korean J. Comput. Appl. Math. 1998, 5, 659–667. [Google Scholar] [CrossRef]
- Caglar, H.; Caglar, N.; Elfaituri, K. B-spline interpolation compared with finite difference, finite element and finite volume methods which applied to two-point boundary value problems. Appl. Math. Comput. 2006, 175, 72–79. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Khalid, A.; Naeem, M.N.; Ghaffar, A.; Khan, F.; Karim, S.A.A.; Nisar, K.S. A new scheme using cubic B-spline to solve non-linear differential equations arising in visco-elastic flows and hydrodynamic stability problems. Mathematics 2019, 7, 1078. [Google Scholar] [CrossRef] [Green Version]
- Khalid, A.; Ghaffar, A.; Naeem, M.N.; Nisar, K.S.; Baleanu, D. Solutions of BVPs arising in hydrodynamic and magnetohydro-dynamic stability theory using polynomial and non-polynomial splines. Alex. Eng. J. 2021, 60, 941–953. [Google Scholar] [CrossRef]
- Heilat, A.S.; Hailat, R.S. Extended cubic B-spline method for solving a system of nonlinear second-order boundary value problems. J. Math. Comput. Sci. 2020, 21, 231–242. [Google Scholar] [CrossRef]
- Khalid, A.; Naeem, M.N.; Ullah, Z.; Ghaffar, A.; Baleanu, D.; Nisar, K.S.; Al-Qurashi, M.M. Numerical solution of the boundary value problems arising in magnetic fields and cylindrical shells. Mathematics 2019, 7, 508. [Google Scholar] [CrossRef] [Green Version]
- Hamid, N.N.A.; Majid, A.A.; Ismail, A.I.M. Extended cubic B-spline method for linear two-point boundary value problems. Sains Malays. 2011, 40, 1285–1290. [Google Scholar]
- Hamid, N.N.A.; Majid, A.A.; Md Ismail, A.I. Cubic trigonometric B-spline applied to linear two-point boundary value problems of order two. World Acad. Sci. Eng. Technol. 2010, 46, 797–802. [Google Scholar]
- Heilat, A.S.; Ismail, A.I.M. Hybrid cubic b-spline method for solving non-linear two-point boundary value problems. Int. J. Pure Appl. Math. 2016, 110, 369–381. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.K.; Abbas, M.; Khalid, N. New Cubic B-spline Approximation for Solving Non-linear Singular Boundary Value Problems Arising in Physiology. Commun. Math. Appl. 2018, 9, 377–392. [Google Scholar]
- Wasim, I.; Abbas, M.; Iqbal, M.K. A new extended B-spline approximation technique for second order singular boundary value problems arising in physiology. J. Math. Comput. Sci. 2019, 19, 258–267. [Google Scholar] [CrossRef]
- Iqbal, M.K.; Abbas, M.; Wasim, I. New cubic B-spline approximation for solving third order Emden–Flower type equations. Appl. Math. Comput. 2018, 331, 319–333. [Google Scholar] [CrossRef]
- Nazir, T.; Abbas, M.; Iqbal, M.K. New cubic B-spline approximation technique for numerical solutions of coupled viscous Burgers equations. Eng. Comput. Swans. Wales 2020, 38, 83–106. [Google Scholar] [CrossRef]
- Abbas, M.; Kashif Iqbal, M.; Zafar, B.; Mat Zin, S.B. New Cubic B-spline Approximations for Solving Non-linear Third-order Korteweg-de Vries Equation. Indian J. Sci. Technol. 2019, 12, 1–9. [Google Scholar] [CrossRef]
- Nazir, T.; Abbas, M.; Iqbal, M.K. A new quintic B-spline approximation for numerical treatment of Boussinesq equation. J. Math. Comput. Sci. 2019, 20, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Lang, F.G.; Xu, X.P. A new cubic B-spline method for approximating the solution of a class of nonlinear second-order boundary value problem with two dependent variables. Sci. Asia 2014, 40, 444–450. [Google Scholar] [CrossRef] [Green Version]
- Zill, D.G.; Cullen, M.R. Differential Equations With Boundary-Value Problems, 7th ed.; Brooks/Cole: Belmont, CS, USA, 2009. [Google Scholar]
- Munguia, M.; Bhatta, D. Use of Cubic B-Spline in Approximating Solutions of Boundary Value Problems. Appl. Appl. Math. Int. J. 2015, 10, 750–771. [Google Scholar]
0 | 1 | 4 | 1 | 0 | |
0 | 0 | 0 | |||
0 | 0 |
Proposed Method | Exact Solution | Absolute Error | |
---|---|---|---|
0.0 | 0.0000000000 | 0.0000000000 | |
0.1 | 0.0593429531 | 0.0593430340 | |
0.2 | 0.1101340372 | 0.1101342072 | |
0.3 | 0.1510241642 | 0.1510244089 | |
0.4 | 0.1804750426 | 0.1804753456 | |
0.5 | 0.1967343303 | 0.1967346701 | |
0.6 | 0.1978076229 | 0.1978079724 | |
0.7 | 0.1814269201 | 0.1814272455 | |
0.8 | 0.1450151375 | 0.1450153975 | |
0.9 | 0.0856461846 | 0.0856463238 | |
1.0 | 1.0000000000 | 1.0000000000 | 0 |
Max-Norm | |||||||
---|---|---|---|---|---|---|---|
FDM [2] | FEM [2] | FVM [2] | BSI [11] | ECBI(N) [16] | ECBI(B) [16] | Proposed Method | |
- | - | ||||||
1000 | - | - |
Proposed Method | Exact Solution | Absolute Error | |
---|---|---|---|
0.0 | 0.0000000000 | 0.0000000000 | 0 |
0.1 | 0.0406569888 | 0.0406569660 | |
0.2 | 0.0898658490 | 0.0898658490 | |
0.3 | 0.1489756718 | 0.1489756718 | |
0.4 | 0.2195247518 | 0.2195247518 | |
0.5 | 0.3032654351 | 0.3032654351 | |
0.6 | 0.4021921308 | 0.4021921308 | |
0.7 | 0.5185728443 | 0.5185728443 | |
0.8 | 0.6549846664 | 0.6549846664 | |
0.9 | 0.8143536951 | 0.8143536951 | |
1.0 | 1.0000000000 | 1.0000000000 | 0 |
Proposed Method | Exact Solution | Absolute Error | |
---|---|---|---|
0.0 | 0.0000000000 | 0.0000000000 | 0 |
0.1 | 0.0542569644 | 0.0542570003 | |
0.2 | 0.1074285058 | 0.1074285617 | |
0.3 | 0.1636254812 | 0.1636255435 | |
0.4 | 0.2267411540 | 0.2267412146 | |
0.5 | 0.3006953149 | 0.3006953693 | |
0.6 | 0.3896566891 | 0.3896567348 | |
0.7 | 0.4982584629 | 0.4982584988 | |
0.8 | 0.6318199531 | 0.6318199790 | |
0.9 | 0.7965865545 | 0.7965865702 | |
1.0 | 1.0000000000 | 1.0000000000 | 0 |
N | Max-Norm | |
---|---|---|
BSI [27] | Proposed Method | |
20 | ||
50 | ||
100 |
x | Proposed Method | Exact Solution | Absolute Error |
---|---|---|---|
0 | 4.0000000000 | 4.0000000000 | 0 |
3.9579782897 | 3.9579782444 | ||
3.8367443738 | 3.8367442991 | ||
3.6439387932 | 3.6439387036 | ||
3.3876357138 | 3.3876356206 | ||
3.0762425517 | 3.0762424637 | ||
2.7184121103 | 2.7184120337 | ||
2.3229629854 | 2.3229629245 | ||
1.8988043202 | 1.8988042779 | ||
1.4548614961 | 1.4548614743 | ||
1.0000000000 | 1.0000000000 | 0 |
N | Max-Norm | |
---|---|---|
BSI [27] | Proposed Method | |
20 | ||
50 | ||
100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latif, B.; Abdul Karim, S.A.; Hashim, I. New Cubic B-Spline Approximation for Solving Linear Two-Point Boundary-Value Problems. Mathematics 2021, 9, 1250. https://doi.org/10.3390/math9111250
Latif B, Abdul Karim SA, Hashim I. New Cubic B-Spline Approximation for Solving Linear Two-Point Boundary-Value Problems. Mathematics. 2021; 9(11):1250. https://doi.org/10.3390/math9111250
Chicago/Turabian StyleLatif, Busyra, Samsul Ariffin Abdul Karim, and Ishak Hashim. 2021. "New Cubic B-Spline Approximation for Solving Linear Two-Point Boundary-Value Problems" Mathematics 9, no. 11: 1250. https://doi.org/10.3390/math9111250
APA StyleLatif, B., Abdul Karim, S. A., & Hashim, I. (2021). New Cubic B-Spline Approximation for Solving Linear Two-Point Boundary-Value Problems. Mathematics, 9(11), 1250. https://doi.org/10.3390/math9111250