Geometric Algebra Framework Applied to Symmetrical Balanced Three-Phase Systems for Sinusoidal and Non-Sinusoidal Voltage Supply
Abstract
:1. Introduction
- It is possible to perform calculations between voltages and currents of different frequencies that generate cross-coupling power terms. Therefore, power under non-sinusoidal conditions can be adequately calculated;
- Foundations of GA circuit analysis is defined in a multi-dimensional geometric domain , where a definition of geometric apparent power that fulfils the principle of energy conservation can be obtained [12]. This power has been named geometric apparent power in the literature. Compared to the traditional definition of apparent power , it considers the contribution of cross effects between voltages and currents of different frequencies and is a signed quantity.
- It is possible to define a new power concept based on geometrical principles that take the interaction of voltage and current harmonics of different frequency into account. This is not possible using phasors based on complex algebra;
- Unified criteria and methods are established for the study of electrical circuits based on a single tool that makes it possible to tackle multidimensional problems, such as those existing in polyphase circuits;
- It establishes basic principles for the compensation of non-active current that allow for the optimisation of energy losses in power transmission lines.
2. GA for Electrical Applications: Overview
3. Case I: Balanced, Symmetric and Sinusoidal
3.1. Current, Voltage and Impedance Calculations
3.2. Power Calculations
3.3. Current Decomposition
3.4. Voltage Transformation Using Geometric Rotors
4. Case II: Balanced, Symmetric and Non-Sinusoidal
4.1. Current, Voltage and Impedance Calculations
4.2. Current Decomposition
4.3. Numerical Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steinmetz, C.P. Complex quantities and their use in electrical engineering. In Proceedings of the International Electrical Congress, Chicago, IL, USA, 21–25 August 1893; pp. 33–74. [Google Scholar]
- Kennelly, A. Impedance. Trans. Am. Inst. Electr. Eng. 1893, 10, 172–232. [Google Scholar] [CrossRef]
- Heaviside, O. Electrical Papers; Macmillan and Company: New York, NY, USA, 1892; Volume 2. [Google Scholar]
- Shepherd, W.; Zand, P. Energy flow and power factor in nonsinusoidal circuits. Electron. Power 1980, 26, 263. [Google Scholar]
- Emanuel, A.E. Powers in nonsinusoidal situations—A review of definitions and physical meaning. IEEE Trans. Power Deliv. 1990, 5, 1377–1389. [Google Scholar] [CrossRef]
- Staudt, V. Fryze-Buchholz-Depenbrock: A time-domain power theory. In Proceedings of the IEEE International School on Nonsinusoidal Currents and Compensation (ISNCC 2008), Lagow, Poland, 10–13 June 2008; pp. 1–12. [Google Scholar]
- Czarnecki, L.S. Currents’ physical components (CPC) concept: A fundamental of power theory. In Proceedings of the IEEE International School on Nonsinusoidal Currents and Compensation (ISNCC 2008), Lagow, Poland, 10–13 June 2008; pp. 1–11. [Google Scholar]
- Yu, Z.; Li, D.; Zhu, S.; Luo, W.; Hu, Y.; Yuan, L. Multisource multisink optimal evacuation routing with dynamic network changes: A geometric algebra approach. Math. Methods Appl. Sci. 2018, 41, 4179–4194. [Google Scholar] [CrossRef]
- Papaefthymiou, M.; Papagiannakis, G. Real-time rendering under distant illumination with conformal geometric algebra. Math. Methods Appl. Sci. 2018, 41, 4131–4147. [Google Scholar] [CrossRef]
- Montoya, F.G.; Alcayde, A.; Arrabal-Campos, F.M.; Baños, R. Quadrature Current Compensation in Non-Sinusoidal Circuits Using Geometric Algebra and Evolutionary Algorithms. Energies 2019, 12, 692. [Google Scholar] [CrossRef] [Green Version]
- Montoya, F.G.; Baños, R.B.; Alcayde, A.; Arrabal-Campos, F.M. Analysis of power flow under non-sinusoidal conditions in the presence of harmonics and interharmonics using geometric algebra. Int. J. Electr. Power Energy Syst. 2019, 111, 486–492. [Google Scholar] [CrossRef]
- Montoya, F.G.; Alcayde, A.; Arrabal-Campos, F.M.; Baños, R.; Roldán-Pérez, J. Geometric Algebra Power Theory (GAPoT): Revisiting Apparent Power under Non-Sinusoidal Conditions. arXiv 2020, arXiv:2002.10011. [Google Scholar]
- Castilla, M.; Bravo, J.C.; Ordonez, M.; Montano, J.C. An approach to the multivectorial apparent power in terms of a generalized poynting multivector. Prog. Electromagn. Res. 2009, 15, 401–422. [Google Scholar] [CrossRef] [Green Version]
- Menti, A.; Zacharias, T.; Milias-Argitis, J. Geometric algebra: A powerful tool for representing power under nonsinusoidal conditions. IEEE Trans. Circuits Syst. I Regul. Pap. 2007, 54, 601–609. [Google Scholar] [CrossRef]
- Castro-Núñez, M.; Castro-Puche, R.; Nowicki, E. The use of geometric algebra in circuit analysis and its impact on the definition of power. In Proceedings of the IEEE 2010 International School on Nonsinusoidal Currents and Compensation (ISNCC), Lagow, Poland, 15–18 June 2010; pp. 89–95. [Google Scholar]
- Castro-Nuñez, M.; Castro-Puche, R. Advantages of geometric algebra over complex numbers in the analysis of networks with nonsinusoidal sources and linear loads. IEEE Trans. Circuits Syst. I Regul. Pap. 2012, 59, 2056–2064. [Google Scholar] [CrossRef]
- Castro-Núñez, M.; Castro-Puche, R. The IEEE Standard 1459, the CPC power theory, and geometric algebra in circuits with nonsinusoidal sources and linear loads. IEEE Trans. Circuits Syst. I Regul. Pap. 2012, 59, 2980–2990. [Google Scholar] [CrossRef]
- Montoya, F.G.; Baños, R.; Alcayde, A.; Arrabal-Campos, F.M. A new approach to single-phase systems under sinusoidal and non-sinusoidal supply using geometric algebra. Electr. Power Syst. Res. 2020, 189, 106605. [Google Scholar] [CrossRef]
- Castilla, M.; Bravo, J.C.; Ordoñez, M. Geometric algebra: A multivectorial proof of Tellegen’s theorem in multiterminal networks. IET Circuits Devices Syst. 2008, 2, 383–390. [Google Scholar] [CrossRef]
- Castilla, M.; Bravo, J.C.; Ordonez, M.; Montaño, J.C. Clifford theory: A geometrical interpretation of multivectorial apparent power. IEEE Trans. Circuits Syst. I Regul. Pap. 2008, 55, 3358–3367. [Google Scholar] [CrossRef]
- Montoya, F.G.; Roldán-Pérez, J.; Alcayde, A.; Arrabal-Campos, F.M.; Banos, R. Geometric Algebra Power Theory in Time Domain. arXiv 2020, arXiv:2002.05458. [Google Scholar]
- Lev-Ari, H.; Stanković, A.M. A geometric algebra approach to decomposition of apparent power in general polyphase networks. In Proceedings of the 41st North American Power Symposium, Starkville, MS, USA, 4–6 October 2009; pp. 1–6. [Google Scholar]
- Jancewicz, B. Multivectors and Clifford Algebra in Electrodynamics; World Scientific: Singapore, 1989. [Google Scholar]
- Dorst, L.; Fontijne, D.; Mann, S. Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Hestenes, D.; Sobczyk, G. Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 5. [Google Scholar]
- Chappell, J.M.; Drake, S.P.; Seidel, C.L.; Gunn, L.J.; Iqbal, A.; Allison, A.; Abbott, D. Geometric algebra for electrical and electronic engineers. Proc. IEEE 2014, 102, 1340–1363. [Google Scholar] [CrossRef]
- Czarnecki, L.S. Currents’ Physical Components (CPC) in Circuits with Nonsinusoidal Voltages and Currents. Part 2: Three-Phase Three-Wire Linear Circuits. Electr. Power Qual. Util. J. 2006, 12, 3–13. [Google Scholar]
- Eid, A.H.; Montoya, F.G. Geometric Algebra Power Theory Numerical Library. Available online: https://github.com/ga-explorer/GAPoTNumLib (accessed on 16 March 2021).
- Hestenes, D. New Foundations for Classical Mechanics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 15. [Google Scholar]
- Czarnecki, L.S. Considerations on the Reactive Power in Nonsinusoidal Situations. IEEE Trans. Instrum. Meas. 1985, IM-34, 399–404. [Google Scholar] [CrossRef]
- Montoya, F.; Baños, R.; Alcayde, A.; Montoya, M.; Manzano-Agugliaro, F. Power Quality: Scientific Collaboration Networks and Research Trends. Energies 2018, 11, 2067. [Google Scholar] [CrossRef] [Green Version]
- Sharon, D. Reactive-power definitions and power-factor improvement in nonlinear systems. Proc. Inst. Electr. Eng. 1973, 120, 704–706. [Google Scholar] [CrossRef]
- Czarnecki, L.S. Currents’ physical components (CPC) in circuits with nonsinusoidal voltages and currents. Part 1, Single-phase linear circuits. Electr. Power Qual. Util. J. 2005, 11, 3–14. [Google Scholar]
- Willems, J.L. Budeanu’s reactive power and related concepts revisited. IEEE Trans. Instrum. Meas. 2011, 60, 1182–1186. [Google Scholar] [CrossRef]
Harmonic Order | Radian Frequency | Sequence |
---|---|---|
() | positive (+) | |
() | negative (−) | |
zero (0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoya, F.G.; Baños, R.; Alcayde, A.; Arrabal-Campos, F.M.; Roldán Pérez, J. Geometric Algebra Framework Applied to Symmetrical Balanced Three-Phase Systems for Sinusoidal and Non-Sinusoidal Voltage Supply. Mathematics 2021, 9, 1259. https://doi.org/10.3390/math9111259
Montoya FG, Baños R, Alcayde A, Arrabal-Campos FM, Roldán Pérez J. Geometric Algebra Framework Applied to Symmetrical Balanced Three-Phase Systems for Sinusoidal and Non-Sinusoidal Voltage Supply. Mathematics. 2021; 9(11):1259. https://doi.org/10.3390/math9111259
Chicago/Turabian StyleMontoya, Francisco G., Raúl Baños, Alfredo Alcayde, Francisco Manuel Arrabal-Campos, and Javier Roldán Pérez. 2021. "Geometric Algebra Framework Applied to Symmetrical Balanced Three-Phase Systems for Sinusoidal and Non-Sinusoidal Voltage Supply" Mathematics 9, no. 11: 1259. https://doi.org/10.3390/math9111259
APA StyleMontoya, F. G., Baños, R., Alcayde, A., Arrabal-Campos, F. M., & Roldán Pérez, J. (2021). Geometric Algebra Framework Applied to Symmetrical Balanced Three-Phase Systems for Sinusoidal and Non-Sinusoidal Voltage Supply. Mathematics, 9(11), 1259. https://doi.org/10.3390/math9111259