A Convergent Three-Step Numerical Method to Solve a Double-Fractional Two-Component Bose–Einstein Condensate
Abstract
:1. Introduction
- (a)
- If , then .
- (b)
- .
- (c)
- .
2. Numerical Method
3. Numerical Properties
- (a)
- ,
- (b)
- ,
- (c)
- .
4. Illustrative Simulations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. MATLAB Algorithm
- Input:
- a1,
- b1,
- T,
- betta11,
- betta12,
- betta22,
- lambda,
- D,
- tau,
- h1,
- P,
- u1, and
- v1.
- Output:
- u3 and
- v3.
a1=−10; b1=10; T=0.5; alpha1=1.5; alpha2=1.5; beta11=1.5; beta12=0.5; beta22=1.5; lambda=−0.5; D=2; tau=0.01; h1=0.1; x=a1:h1:b1; t=0:tau:T; M=length(x); N=length(t); P=0.5.*x.2; u1=exp(-x.2)./sqrt(pi); v1=exp(-x.2)./sqrt(pi); ga1=zeros(1,M); ga2=zeros(1,M); ga1(1)=gamma(alpha1+1)/gamma(0.5*alpha1+1)2/h1alpha1; ga2(1)=gamma(alpha2+1)/gamma(0.5*alpha2+1)2/h1alpha2; for k=1:M-1 ga1(k+1)=(1-(alpha1+1)/(0.5*alpha1+k))*ga1(k); ga2(k+1)=(1-(alpha2+1)/(0.5*alpha2+k))*ga2(k); end Ha1=zeros(M,M); Ha2=zeros(M,M); for j=1:M for k=1:M Ha1(j,k)=ga1(abs(j-k)+1); Ha2(j,k)=ga2(abs(j-k)+1); end end A=diag(0.5*tau.*(P+D)-1i)+0.25.*tau.*Ha1; C=diag(0.5*tau.*(P+D)+1i)+0.25.*tau*Ha1; B=diag(0.5*tau.*P-1i)+0.25.*tau.*Ha2; D=diag(0.5*tau.*P+1i)+0.25.*tau.*Ha2; u2=u1+1i.*tau.*(-0.5.*u1*Ha1-P.*u1-u1*D-lambda*v1... -(beta11.*abs(u1).2+beta12.*abs(v1).2).*u1); v2=u1+1i.*tau.*(-0.5.*v1*Ha2-P.*v1-lambda*u1... -(beta12.*abs(u1).2+beta22.*abs(v1).2).*v1); for n=3:N meanu=0.5.*(3.*u2-u1); meanv=0.5.*(3.*v2-v1); c=(beta11.*abs(meanu).2+beta12.*abs(meanv).2).*meanu+lambda.*meanv; d=(beta12.*abs(meanu).2+beta22.*abs(meanv).2).*meanv+lambda.*meanu; u3=linsolve(A,-C*u2’-tau.*c’)’; v3=linsolve(B,-D*v2’-tau.*d’)’; u3(1)=0; u3(M)=0; u1=u2; u2=u3; v1=v2; v2=v3; end end |
References
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998; Volume 198. [Google Scholar]
- Bao, W.; Markowich, P.A.; Wang, H. Ground, symmetric and central vortex states in rotating Bose-Einstein condensates. Commun. Math. Sci. 2005, 3, 57–88. [Google Scholar] [CrossRef]
- Antoine, X.; Tang, Q.; Zhang, Y. On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross–Pitaevskii equations with rotation term and nonlocal nonlinear interactions. J. Comput. Phys. 2016, 325, 74–97. [Google Scholar] [CrossRef] [Green Version]
- Bao, W.; Cai, Y. Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation. Math. Comput. 2013, 82, 99–128. [Google Scholar] [CrossRef] [Green Version]
- Cerimele, M.M.; Chiofalo, M.L.; Pistella, F.; Succi, S.; Tosi, M.P. Numerical solution of the Gross-Pitaevskii equation using an explicit finite-difference scheme: An application to trapped Bose-Einstein condensates. Phys. Rev. E 2000, 62, 1382. [Google Scholar] [CrossRef] [Green Version]
- Myatt, C.; Burt, E.; Ghrist, R.; Cornell, E.A.; Wieman, C. Production of two overlapping Bose-Einstein condensates by sympathetic cooling. Phys. Rev. Lett. 1997, 78, 586. [Google Scholar] [CrossRef]
- Hall, D.; Matthews, M.; Ensher, J.; Wieman, C.; Cornell, E.A. Dynamics of component separation in a binary mixture of Bose-Einstein condensates. Phys. Rev. Lett. 1998, 81, 1539. [Google Scholar] [CrossRef] [Green Version]
- Modugno, G.; Ferrari, G.; Roati, G.; Brecha, R.J.; Simoni, A.; Inguscio, M. Bose-Einstein condensation of potassium atoms by sympathetic cooling. Science 2001, 294, 1320–1322. [Google Scholar] [CrossRef]
- Mudrich, M.; Kraft, S.; Singer, K.; Grimm, R.; Mosk, A.; Weidemüller, M. Sympathetic cooling with two atomic species in an optical trap. Phys. Rev. Lett. 2002, 88, 253001. [Google Scholar] [CrossRef] [Green Version]
- Haas, M.; Leung, V.; Frese, D.; Haubrich, D.; John, S.; Weber, C.; Rauschenbeutel, A.; Meschede, D. Species-selective microwave cooling of a mixture of rubidium and caesium atoms. New J. Phys. 2007, 9, 147. [Google Scholar] [CrossRef]
- Ortigueira, M.D. Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. 2006, 2006, 048391. [Google Scholar] [CrossRef]
- Wang, X.; Liu, F.; Chen, X. Novel second-order accurate implicit numerical methods for the Riesz space distributed-order advection-dispersion equations. Adv. Math. Phys. 2015, 2015, 590435. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F. Fractional calculus. In Fractals and Fractional Calculus in Continuum Mechanics; Springer: Berlin/Heidelberg, Germany, 1997; pp. 223–276. [Google Scholar]
- Nonnenmacher, T.F.; Metzler, R. On the Riemann–Liouville fractional calculus and some recent applications. Fractals 1995, 3, 557–566. [Google Scholar] [CrossRef]
- Dalir, M.; Bashour, M. Applications of fractional calculus. Appl. Math. Sci. 2010, 4, 1021–1032. [Google Scholar]
- Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Bagley, R.L.; Torvik, P. A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 1983, 27, 201–210. [Google Scholar] [CrossRef]
- Rossikhin, Y.A.; Shitikova, M.V. Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results. Appl. Mech. Rev. 2010, 63. [Google Scholar] [CrossRef]
- Fallahgoul, H.; Focardi, S.; Fabozzi, F. Fractional Calculus and Fractional Processes with Applications to Financial Economics: Theory and Application; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Scalas, E.; Gorenflo, R.; Mainardi, F. Fractional calculus and continuous-time finance. Phys. Stat. Mech. Appl. 2000, 284, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sun, H.; Stowell, H.H.; Zayernouri, M.; Hansen, S.E. A review of applications of fractional calculus in Earth system dynamics. Chaos Solitons Fractals 2017, 102, 29–46. [Google Scholar] [CrossRef]
- Ionescu, C.; Lopes, A.; Copot, D.; Machado, J.T.; Bates, J. The role of fractional calculus in modeling biological phenomena: A review. Commun. Nonlinear Sci. Numer. Simul. 2017, 51, 141–159. [Google Scholar] [CrossRef]
- Nowakowski, J.; Ostalczyk, P.; Sankowski, D. Application of fractional calculus for modelling of two-phase gas/liquid flow system. Inform. Autom. Pomiary Gospod. Ochr. ŚRodowiska 2017, 7, 42–45. [Google Scholar] [CrossRef]
- Tarasov, V.E. Continuous limit of discrete systems with long-range interaction. J. Phys. Math. Gen. 2006, 39, 14895. [Google Scholar] [CrossRef] [Green Version]
- Macías-Díaz, J.E.; Bountis, A. Supratransmission in β-Fermi–Pasta–Ulam chains with different ranges of interactions. Commun. Nonlinear Sci. Numer. Simul. 2018, 63, 307–321. [Google Scholar] [CrossRef]
- Christodoulidi, H.; Tsallis, C.; Bountis, T. Fermi–Pasta–Ulam model with long-range interactions: Dynamics and thermostatistics. EPL 2014, 108, 40006. [Google Scholar] [CrossRef] [Green Version]
- Bountis, T. From mechanical to biological oscillator networks: The role of long range interactions. Eur. Phys. J. Spec. Top. 2016, 225, 1017–1035. [Google Scholar] [CrossRef]
- Ortigueira, M.D. Fractional central differences and derivatives. Ifac Proc. Vol. 2006, 39, 58–63. [Google Scholar] [CrossRef]
- Hao, Z.P.; Sun, Z.Z.; Cao, W.R. A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 2015, 281, 787–805. [Google Scholar] [CrossRef]
- Lin, F.R.; Wang, Q.Y.; Jin, X.Q. Crank-Nicolson-weighted-shifted-Grünwald-difference schemes for space Riesz variable-order fractional diffusion equations. Numer. Algorithms 2020, 1–31. [Google Scholar] [CrossRef]
- Hendy, A.S.; Macías-Díaz, J.E. An efficient Hamiltonian numerical model for a fractional Klein–Gordon equation through weighted-shifted Grünwald differences. J. Math. Chem. 2019, 57, 1394–1412. [Google Scholar] [CrossRef]
- Macías-Díaz, J.E. A numerically efficient variational algorithm to solve a fractional nonlinear elastic string equation. Numer. Algorithms 2020, 1–28. [Google Scholar] [CrossRef]
- Martínez, R.; Macías-Díaz, J.E. An energy-preserving and efficient scheme for a double-fractional conservative Klein–Gordon–Zakharov system. Appl. Numer. Math. 2020, 158, 292–313. [Google Scholar] [CrossRef]
- Wang, Y.M.; Ren, L. A high-order L2-compact difference method for Caputo-type time-fractional sub-diffusion equations with variable coefficients. Appl. Math. Comput. 2019, 342, 71–93. [Google Scholar] [CrossRef]
- Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Oldham, K.; Spanier, J. The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order; Elsevier: Amsterdam, The Netherlands, 1974. [Google Scholar]
- Gao, G.H.; Sun, Z.Z.; Zhang, H.W. A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 2014, 259, 33–50. [Google Scholar] [CrossRef]
- Yan, Y.; Sun, Z.Z.; Zhang, J. Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: A second-order scheme. Commun. Comput. Phys. 2017, 22, 1028–1048. [Google Scholar] [CrossRef]
- Macías-Díaz, J.E. Nonlinear wave transmission in harmonically driven hamiltonian sine-Gordon regimes with memory effects. Chaos Solitons Fractals 2020, 110362. [Google Scholar] [CrossRef]
- Murillo, J.Q.; Yuste, S.B. An explicit difference method for solving fractional diffusion and diffusion-wave equations in the Caputo form. J. Comput. Nonlinear Dyn. 2011, 6. [Google Scholar] [CrossRef]
- Macías-Díaz, J.E. Numerical study of the process of nonlinear supratransmission in Riesz space-fractional sine-Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 2017, 46, 89–102. [Google Scholar] [CrossRef]
- De Pablo, A.; Quirós, F.; Rodríguez, A.; Vázquez, J.L. A fractional porous medium equation. Adv. Math. 2011, 226, 1378–1409. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, J.L.; de Pablo, A.; Quirós, F.; Rodríguez, A. Classical solutions and higher regularity for nonlinear fractional diffusion equations. J. Eur. Math. Soc. 2017, 19, 1949–1975. [Google Scholar] [CrossRef] [Green Version]
- Bonforte, M.; Sire, Y.; Vázquez, J.L. Optimal existence and uniqueness theory for the fractional heat equation. Nonlinear Anal. Theory Methods Appl. 2017, 153, 142–168. [Google Scholar] [CrossRef] [Green Version]
- Stan, D.; Vázquez, J.L. The Fisher–KPP equation with nonlinear fractional diffusion. Siam J. Math. Anal. 2014, 46, 3241–3276. [Google Scholar] [CrossRef] [Green Version]
- Segatti, A.; Vázquez, J.L. On a fractional thin film equation. Adv. Nonlinear Anal. 2020, 9, 1516–1558. [Google Scholar] [CrossRef]
- Díaz, J.I.; Gómez-Castro, D.; Vázquez, J.L. The fractional Schrödinger equation with general nonnegative potentials. The weighted space approach. Nonlinear Anal. 2018, 177, 325–360. [Google Scholar] [CrossRef] [Green Version]
- Adda, F.B. Geometric interpretation of the differentiability and gradient of real order. C. R. L’Academie Des. Sci. Ser. Math. 1998, 8, 931–934. [Google Scholar]
- Adda, F.B. The differentiability in the fractional calculus. Nonlinear Anal. 2001, 47, 5423–5428. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Mortensen, J.; Wheatcraft, S.W. Fractional vector calculus for fractional advection–dispersion. Phys. Stat. Mech. Appl. 2006, 367, 181–190. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys. 2008, 323, 2756–2778. [Google Scholar] [CrossRef] [Green Version]
- Ortigueira, M.D.; Rivero, M.; Trujillo, J.J. From a generalised Helmholtz decomposition theorem to fractional Maxwell equations. Commun. Nonlinear Sci. Numer. Simul. 2015, 22, 1036–1049. [Google Scholar] [CrossRef]
- Ortigueira, M.; Machado, J. On fractional vectorial calculus. Bull. Pol. Acad. Sci. Tech. Sci. 2018, 66. [Google Scholar] [CrossRef]
- Desplanques, J. Théoreme d’algébre. J. Math. Spec. 1887, 9, 12–13. [Google Scholar]
- Pen-Yu, K. Numerical methods for incompressible viscous flow. Sci. Sin. 1977, 20, 287–304. [Google Scholar]
- Macías-Díaz, J.E. A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives. J. Comput. Phys. 2017, 351, 40–58. [Google Scholar] [CrossRef]
p | D | ||||||
---|---|---|---|---|---|---|---|
1 | 7 | 2 |
(a) Temporal Study of Convergence. | ||||||
---|---|---|---|---|---|---|
− | − | − | ||||
(b) Spatial Study of Convergence. | ||||||
h | ||||||
− | − | − | ||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serna-Reyes, A.J.; Macías-Díaz, J.E.; Reguera, N. A Convergent Three-Step Numerical Method to Solve a Double-Fractional Two-Component Bose–Einstein Condensate. Mathematics 2021, 9, 1412. https://doi.org/10.3390/math9121412
Serna-Reyes AJ, Macías-Díaz JE, Reguera N. A Convergent Three-Step Numerical Method to Solve a Double-Fractional Two-Component Bose–Einstein Condensate. Mathematics. 2021; 9(12):1412. https://doi.org/10.3390/math9121412
Chicago/Turabian StyleSerna-Reyes, Adán J., Jorge E. Macías-Díaz, and Nuria Reguera. 2021. "A Convergent Three-Step Numerical Method to Solve a Double-Fractional Two-Component Bose–Einstein Condensate" Mathematics 9, no. 12: 1412. https://doi.org/10.3390/math9121412
APA StyleSerna-Reyes, A. J., Macías-Díaz, J. E., & Reguera, N. (2021). A Convergent Three-Step Numerical Method to Solve a Double-Fractional Two-Component Bose–Einstein Condensate. Mathematics, 9(12), 1412. https://doi.org/10.3390/math9121412