Quadratic First Integrals of Time-Dependent Dynamical Systems of the Form
Abstract
:1. Introduction
- (a)
- Consider a general form for the function and let the quantities unspecified. In this case, the quantities act as constraints;
- (b)
- Specify the quantities and determine for which functions the resulting dynamical system admits QFIs.
2. The System of Equations
- (a)
- Consider a general form for the function and let the quantities unspecified. In this case the quantities act as constraints.
- (b)
- Specify the quantities and determine for which functions the resulting dynamical system admits FIs.
3. The Point Noether FIs of the Time-Dependent Dynamical System (2)
3.1. Case Is the HV of with Homothety Factor
3.2. Case Where Is the Gradient HV of
3.3. Case and Where Is the Gradient HV of
4. The Polynomial Method for Computing the QFIs
5. The Case with ,
6. Special Cases of the QFI
6.1. The QFI
6.2. The QFI
- (1)
- For .
- (2)
- For .
- (3)
- For .
7. The Basis Method for Computing QFIs
8. The Geometric Quantities of
9. The Time-Dependent Newtonian Generalized Kepler Potential
- -
- . The general case.
- -
- . Time-dependent Kepler potential.
- -
- . Time-dependent 3d oscillator.
10. The General Case
10.1.
10.2. where
- -
- (time-dependent Kepler potential).
- -
- (Newton–Cotes potential [31]).
- -
- (time-dependent oscillator).
11. The Time-Dependent Kepler Potential
- -
- a general function;
- -
- where ;
- -
- where and .
11.1. ,
11.2. , ,
12. The 3d Time-Dependent Oscillator
12.1. The Lewis Invariant
12.2. The System of Equations (98)–(101)
12.2.1. ,
12.2.2. ,
13. A Special Class of Time-Dependent Oscillators
14. Collection of Results
15. Integrating the Equations
15.1. The 3d Time-Dependent Oscillator with Given by (123)
15.2. The Solution of the Time-Dependent Kepler Potential with Where
16. A Class of 1d Non-Linear Time-Dependent Equations
- (1)
- Case .
- (2)
- Case .
- (3)
- Case .
- (4)
- Case .
16.1. The Generalized Lane–Emden Equation
- (a)
- Case .
- -
- , .
- -
- , .
- -
- , .
- (b)
- Case .
- -
- , .
- -
- , .
- -
- , .
17. Conclusions
- a.
- The polynomial method in which one assumes a general polynomial form in the variable t both for the KT and for the vector .
- b.
- The basis method where one computes first a basis of the KTs of order 2 of the kinetic metric and then expresses in this basis assuming that the ‘components’ are functions of t.
- a.
- First, we considered the polynomial method and assumed the function to be a polynomial leaving the quantities unspecified. It is found that in this case, the resulting dynamical system admits two independent QFIs whose explicit expression together with conditions involving the quantities and the collineations of the kinetic metric are given in Theorem 1.
- b.
- In the basis method we worked the other way. That is, we assumed the quantities to be given by the time-dependent generalized Kepler potential and determined the functions for which QFIs exist. The results of this detailed study are displayed in Table 2 for all values of . For the values we recovered the known results concerning the time-dependent 3d oscillator, the time-dependent Kepler potential and the Newton–Cotes potential, respectively. We note that these latter results have appeared over the years in many works whereas in the present discussion occur as particular cases of a single geometric approach.
Author Contributions
Funding
Conflicts of Interest
Appendix A
- a.
- For :
- b.
- For :
- -
- Case .
- -
- Case .
References
- Katzin, G.H.; Levine, J. Dynamical symmetries and constants of the motion for classical particle systems. J. Math. Phys. 1974, 15, 1460. [Google Scholar] [CrossRef]
- Tsamparlis, M.; Paliathanasis, A. Two-dimensional dynamical systems which admit Lie and Noether symmetries. J. Phys. A Math. Theor. 2011, 44, 175202. [Google Scholar] [CrossRef] [Green Version]
- Tsamparlis, M.; Paliathanasis, A.; Karpathopoulos, L. Autonomous three-dimensional Newtonian systems which admit Lie and Noether point symmetries. J. Phys. A Math. Theor. 2012, 45, 275201. [Google Scholar] [CrossRef] [Green Version]
- Paliathanasis, A.; Tsamparlis, M. Lie point symmetries of a general class of PDEs: The heat equation. J. Geom. Phys. 2012, 62, 2443. [Google Scholar] [CrossRef] [Green Version]
- Tsamparlis, M. Geometrization of Lie and Noether symmetries and applications. Int. J. Mod. Phys. Conf. Ser. 2015, 38, 1560078. [Google Scholar] [CrossRef] [Green Version]
- Katzin, G.H.; Levine, J. A gauge invariant formulation of time-dependent dynamical symmetry mappings and associated constants of motion for Lagrangian particle mechanics. I. J. Math. Phys. 1976, 17, 1345. [Google Scholar] [CrossRef]
- Katzin, G.H.; Levine, J.; Sane, R.N. Time-dependent dynamical symmetry mappings and associated constants of motion for classical particles. II. J. Math. Phys. 1977, 18, 424. [Google Scholar] [CrossRef]
- Katzin, G.H.; Levine, J. Time-dependent dynamical symmetries and constants of motion. III. Time-dependent harmonic oscillator. J. Math. Phys. 1977, 18, 1267. [Google Scholar] [CrossRef]
- Ray, J.R.; Reid, J.L. Noether’s theorem, time-dependent invariants and nonlinear equations of motion. J. Math. Phys. 1979, 20, 2054. [Google Scholar] [CrossRef]
- Prince, G.E.; Eliezer, C.J. Symmetries of the time-dependent N-dimensional oscillator. J. Phys. A Math. Gen. 1980, 13, 815. [Google Scholar] [CrossRef]
- Ray, J.R. Noether’s theorem and exact invariants for time-dependent systems. J. Phys. A Math. Gen. 1980, 13, 1969. [Google Scholar] [CrossRef]
- Karpathopoulos, L.; Paliathanasis, A.; Tsamparlis, M. Lie and Noether point symmetries for a class of nonautonomous dynamical systems. J. Math. Phys. 2017, 58, 082901. [Google Scholar] [CrossRef] [Green Version]
- Lewis, H.R. Class of Exact Invariants for Classical and Quantum Time-dependent Harmonic Oscillators. J. Math. Phys. 1968, 9, 1976. [Google Scholar] [CrossRef]
- Günther, N.J.; Leach, P.G.L. Generalized invariants for the time-dependent harmonic oscillator. J. Math. Phys. 1977, 18, 572. [Google Scholar] [CrossRef]
- Ray, J.R.; Reid, J.L. More exact invariants for the time-dependent harmonic oscillator. Phys. Lett. A 1979, 71, 317. [Google Scholar] [CrossRef]
- Prince, G.E.; Eliezer, C.J. On the Lie symmetries of the classical Kepler problem. J. Phys. A Math. Gen. 1981, 14, 587. [Google Scholar] [CrossRef]
- Katzin, G.H.; Levine, J. Time-dependent quadratic constants of motion, symmetries, and orbit equations for classical particle dynamical systems with time-dependent Kepler potentials. J. Math. Phys. 1982, 23, 552. [Google Scholar] [CrossRef]
- Leach, P.G.L. Classes of potentials of time-dependent central force fields which possess first integral quadratic in the momenta. J. Math. Phys. 1985, 26, 1613. [Google Scholar] [CrossRef]
- Rosenhaus, V.; Katzin, G.H. On symmetries, conservation laws, and variational problems for partial differential equations. J. Math. Phys. 1994, 35, 1998. [Google Scholar] [CrossRef]
- Bozhkov, Y.; Freire, I.L. Special conformal groups of a Riemannian manifold and Lie point symmetries of the nonlinear Poisson equation. J. Differ. Equat. 2010, 249, 872. [Google Scholar] [CrossRef] [Green Version]
- Tsamparlis, M.; Paliathanasis, A. Symmetries of second-order PDEs and conformal Killing vectors. J. Phys. Conf. Ser. 2015, 621, 012014. [Google Scholar] [CrossRef] [Green Version]
- Djukic, D.S.; Vujanovic, B.D. Noether’s Theory in Classical Nonconservative Mechanics. Acta Mechanica 1975, 23, 17. [Google Scholar] [CrossRef]
- Tsamparlis, M.; Mitsopoulos, A. First integrals of holonomic systems without Noether symmetries. J. Math. Phys. 2020, 61, 122701. [Google Scholar] [CrossRef]
- Katzin, G.H. Related integral theorem. II. A method for obtaining quadratic constants of the motion for conservative dynamical systems admitting symmetries. J. Math. Phys. 1973, 14, 1213. [Google Scholar] [CrossRef]
- Katzin, G.H.; Levine, J. Geodesic first integrals with explicit path-parameter dependence in Riemannian space-times. J. Math. Phys. 1981, 22, 1878. [Google Scholar] [CrossRef]
- Katzin, G.H.; Levine, J. Time-dependent vector constants of motion, symmetries, and orbit equations for the dynamical system r¨=i^rU¨(t)/U(t)r-μ0/U(t)r-2. J. Math. Phys. 1983, 24, 1761. [Google Scholar] [CrossRef]
- Tsamparlis, M.; Mitsopoulos, A. Quadratic first integrals of autonomous conservative dynamical systems. J. Math. Phys. 2020, 61, 072703. [Google Scholar] [CrossRef]
- Thompson, G. Polynomial constants of motion in flat space. J. Math. Phys. 1984, 25, 3474. [Google Scholar] [CrossRef]
- Thompson, G. Killing tensors in spaces of constant curvature. J. Math. Phys. 1986, 27, 2693. [Google Scholar] [CrossRef]
- Horwood, J.T. On the theory of algebraic invariants of vector spaces of Killing tensors. J. Geom. Phys. 2008, 58, 487. [Google Scholar] [CrossRef]
- Ibragimov, N.H.; Kara, A.H.; Mahomed, F.H. Lie-Bäcklund and Noether Symmetries with Applications. Nonlinear Dyn. 1998, 15, 115. [Google Scholar] [CrossRef]
- Crampin, M. Hidden Symmetries and Killing Tensors. Rep. Math. Phys. 1984, 20, 31. [Google Scholar] [CrossRef]
- Chanu, C.; Degiovanni, L.; McLenaghan, R.G. Geometrical classification of Killing tensors on bidimensional flat manifolds. J. Math. Phys. 2006, 47, 073506. [Google Scholar] [CrossRef] [Green Version]
- Leach, P.G.L. Generalized Ermakov systems. Phys. Lett. A 1991, 158, 102–106. [Google Scholar] [CrossRef]
- Tsamparlis, M.; Paliathanasis, A. Generalizing the autonomous Kepler-Ermakov system in a Riemannian space. J. Phys. A Math. Theor. 2012, 45, 275202. [Google Scholar] [CrossRef]
- Da Silva, M.R.M.C. A transformation approach for finding first integrals of motion of dynamical systems. Int. J. Non-Linear Mech. 1974, 9, 241. [Google Scholar] [CrossRef]
- Sarlet, W.; Bahar, L.Y. A direct construction of first integrals for certain non-linear dynamical systems. Int. J. Non-Linear Mech. 1980, 15, 133. [Google Scholar] [CrossRef]
- Stephani, H.; Kramer, D.; Maccallum, M.; Hoenselaers, C.; Herlt, E. Exact Solutions to Einstein’s Field Equations, 2nd ed.; Cambridge U.P.: Cambridge, UK, 2003. [Google Scholar]
- Stephani, H. A new interior solution of Einstein’s field equations for a spherically symmetric perfect fluid in shear-free motion. J. Phys. A Math. Gen. 1983, 16, 3529. [Google Scholar] [CrossRef]
- Srivastana, D.C. Exact solutions for shear-free motion of spherically symmetric perfect fluid distributions in general relativity. Class. Quant. Grav. 1987, 4, 1093. [Google Scholar] [CrossRef]
- Leach, P.G.L.; Maharaj, S.D. A first integral for a class of time-dependent anharmonic oscillators with multiple anharmonicities. J. Math. Phys. 1992, 33, 2023. [Google Scholar] [CrossRef]
- Leach, P.G.L.; Maartens, R.; Maharaj, S.D. Self-similar solutions of the generalized Emden–Fowler equation. Int. J. Non-Linear Mech. 1992, 27, 575. [Google Scholar] [CrossRef]
- Maharaj, S.D.; Leach, P.G.L.; Maartens, R. Expanding Spherically Symmetric Models without Shear. Gen. Rel. Grav. 1996, 28, 35. [Google Scholar] [CrossRef] [Green Version]
- Muatjetjeja, B.; Khalique, C.M. Exact solutions of the generalized Lane–Emden equations of the first and second kind. Pramana J. Phys. 2011, 77, 545. [Google Scholar] [CrossRef]
- Khalique, C.M.; Mahomed, F.M.; Muatjetjeja, B. Lagrangian formulation of a generalized Lane–Emden equation and double reduction. J. Nonlin. Math. Phys. 2008, 15, 152. [Google Scholar] [CrossRef] [Green Version]
LFIs and QFIs | |
---|---|
∀ | , , , |
, | |
, | |
, |
LFIs and QFIs | ||
---|---|---|
∀ | ∀ | , |
k | ||
k | ||
, , , where | ||
1 | k | |
, where | ||
2 | k | , |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitsopoulos, A.; Tsamparlis, M.
Quadratic First Integrals of Time-Dependent Dynamical Systems of the Form
Mitsopoulos A, Tsamparlis M.
Quadratic First Integrals of Time-Dependent Dynamical Systems of the Form
Mitsopoulos, Antonios, and Michael Tsamparlis.
2021. "Quadratic First Integrals of Time-Dependent Dynamical Systems of the Form
Mitsopoulos, A., & Tsamparlis, M.
(2021). Quadratic First Integrals of Time-Dependent Dynamical Systems of the Form