Solution of Moore–Gibson–Thompson Equation of an Unbounded Medium with a Cylindrical Hole
Abstract
:1. Introduction
2. The Basic MGT Thermo-Diffusion Equations
3. Implementation of the Proposed Model
4. Initial and Boundary Conditions
5. Solution in the Laplace Transform Domain
5.1. Generalized MGT Model of Thermoelasticity without DIFFUSION
5.2. Special Cases of Thermoelasticity and Thermo-Diffusion Models
- The traditional theory of thermoelasticity (CTE) [1] when .
- The Lord and Shulman generalized theory (LS) [2] by setting .
- The Green and Naghdi model of Type II (GN-II) [6] when the first term on the right-hand side of Equation (15) is disregarded and .
- The Green and Naghdi theory of Type III (GN-III) [5] when .
- The generalized thermoelastic diffusion model (GTD) [36] by setting and .
- The Green and Naghdi thermoelastic diffusion theory of Type II (GND-II) [49] when the first term on the right-hand side of Equation (15) is neglected with the addition of .
- The Green and Naghdi thermoelastic diffusion theory of Type III (GND-III) [50] when thermal relaxation .
- The Moore–Gibson–Thompson diffusion thermoelasticity theory MGTED when the parameters .
5.3. Inversion of the Laplace Transforms
6. Numerical Example and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Biot, M.A. Thermoelasticity and Irreversible Thermodynamics. J. Appl. Phys. 1956, 27, 240–253. [Google Scholar] [CrossRef]
- Lord, H.; Shulman, Y. A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 1967, 15, 299–309. [Google Scholar] [CrossRef]
- Green, A.E.; Lindsay, K.A. Thermoelasticity. J. Elast. 1972, 2, 1–7. [Google Scholar] [CrossRef]
- Green, A.E.; Naghdi, P.M. A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. A 1991, 432, 171–194. [Google Scholar] [CrossRef]
- Green, A.E.; Naghdi, P.M. On undamped heat waves in an elastic solid. J. Therm. Stress. 1992, 15, 253–264. [Google Scholar] [CrossRef]
- Green, A.E.; Naghdi, P.M. Thermoelasticity without energy dissipation. J. Elast. 1993, 31, 189–208. [Google Scholar] [CrossRef]
- Choudhuri, S.K.R. On A Thermoelastic Three-Phase-Lag Model. J. Therm. Stress. 2007, 30, 231–238. [Google Scholar] [CrossRef]
- Abouelregal, A.E. Modified fractional thermoelasticity model with multi-relaxation times of higher order: Application to spherical cavity exposed to a harmonic varying heat. Waves Random Complex Media 2019, 1–21. [Google Scholar] [CrossRef]
- Abouelregal, A.E. On Green and Naghdi thermoelasticity model without energy dissipation with higher order time differential and phase-lags. J. Appl. Comput. Mech. 2019, 6, 445–456. [Google Scholar]
- Abouelregal, A.E. Two-temperature thermoelastic model without energy dissipation including higher order time-derivatives and two phase-lags. Mater. Res. Express 2019, 6, 116535. [Google Scholar] [CrossRef]
- Abouelregal, A.E. A novel model of nonlocal thermoelasticity with time derivatives of higher order. Math. Methods Appl. Sci. 2020, 43, 6746–6760. [Google Scholar] [CrossRef]
- Tzou, D.Y. A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales. J. Heat Transf. 1995, 117, 8–16. [Google Scholar] [CrossRef]
- Tzou, D.Y. Macro-to Microscale Heat Transfer: The Lagging Behavior, 1st ed.; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Dreher, M.; Quintanilla, R.; Racke, R. Ill-posed problems in thermomechanics. Appl. Math. Lett. 2009, 22, 1374–1379. [Google Scholar] [CrossRef]
- Quintanilla, R. Moore-Gibson-Thompson thermoelasticity. Math. Mech. Solids 2019, 24, 4020–4031. [Google Scholar] [CrossRef]
- Quintanilla, R. Moore-Gibson-Thompson thermoelasticity with two temperatures. Appl. Eng. Sci. 2020, 1, 100006. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Ahmed, I.-E.; Nasr, M.E.; Khalil, K.M.; Zakria, A.; Mohammed, F.A. Thermoelastic Processes by a Continuous Heat Source Line in an Infinite Solid via Moore–Gibson–Thompson Thermoelasticity. Materials 2020, 13, 4463. [Google Scholar] [CrossRef] [PubMed]
- Marin, M.; Othman, M.I.A.; Seadawy, A.R.; Carstea, C. A domain of influence in the Moore–Gibson–Thompson theory of dipolar bodies. J. Taibah Univ. Sci. 2020, 14, 653–660. [Google Scholar] [CrossRef]
- Conti, M.; Pata, V.; Quintanilla, R. Thermoelasticity of Moore–Gibson–Thompson type with history dependence in the temperature. Asymptot. Anal. 2020, 120, 1–21. [Google Scholar] [CrossRef]
- Aboueregal, A.E.; Sedighi, H.M. The effect of variable properties and rotation in a visco-thermoelastic orthotropic annular cylinder under the Moore–Gibson–Thompson heat conduction model. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2021, 235, 1004–1020. [Google Scholar] [CrossRef]
- Fernández, J.R.; Quintanilla, R. Moore-Gibson-Thompson theory for thermoelastic dielectrics. Appl. Math. Mech. 2021, 42, 309–316. [Google Scholar] [CrossRef]
- Aboueregal, A.E. An advanced model of thermoelasticity with higher-order memory-dependent derivatives and dual time-delay factors. Wave. Random Complex Media 2021. [Google Scholar] [CrossRef]
- Pellicer, M.; Quintanilla, R. On uniqueness and instability for some thermomechanical problems involving the Moore–Gibson–Thompson equation. Zeitschrift für angewandte Mathematik und Physik 2020, 71, 1–21. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Moustapha, M.V.; Nofal, T.A.; Rashid, S.; Ahmad, H. Generalized thermoelasticity based on higher-order memory-dependent derivative with time delay. Results Phys. 2021, 20, 103705. [Google Scholar] [CrossRef]
- Pellicer, M.; Solà-Morales, J. Optimal scalar products in the Moore-Gibson-Thompson equation. Evol. Equ. Control Theory 2019, 8, 203–220. [Google Scholar] [CrossRef] [Green Version]
- Abouelregal, A.E.; Ahmad, H.; Yao, S.-W. Functionally Graded Piezoelectric Medium Exposed to a Movable Heat Flow Based on a Heat Equation with a Memory-Dependent Derivative. Materials 2020, 13, 3953. [Google Scholar] [CrossRef]
- Bazarra, N.; Fernández, J.R.; Quintanilla, R. Analysis of a Moore-Gibson-Thompson thermoelastic problem. J. Comput. Appl. Math. 2021, 382, 113058. [Google Scholar] [CrossRef]
- Dell’Oro, F.; Pata, V. On the Moore–Gibson–Thompson Equation and Its Relation to Linear Viscoelasticity. Appl. Math. Optim. 2016, 76, 641–655. [Google Scholar] [CrossRef]
- Conti, M.; Pata, V.; Pellicer, M.; Quintanilla, R. On the analyticity of the MGT-viscoelastic plate with heat conduction. J. Differ. Equ. 2020, 269, 7862–7880. [Google Scholar] [CrossRef]
- Singh, B.; Mukhopadhyay, S. Galerkin-type solution for the Moore–Gibson–Thompson thermoelasticity theory. Acta Mech. 2021, 232, 1273–1283. [Google Scholar] [CrossRef]
- Kumar, R.; Kansal, T. Propagation of Lamb waves in transversely isotropic thermoelastic diffusive plate. Int. J. Solids Struct. 2008, 45, 5890–5913. [Google Scholar] [CrossRef] [Green Version]
- Xiong, C.; Guo, Y. Electromagneto-thermoelastic diffusive plane waves in a half-space with variable material properties under fractional order thermoelastic diffusion. Int. J. Appl. Electromagn. Mech. 2017, 53, 251–269. [Google Scholar] [CrossRef]
- Nowacki, W. Dynamical problems of thermodiffusion in solids. Bull. Acad. Pol. Sci. Ser. Sci. Tech. 1974, 22, 55–64. [Google Scholar]
- Nowacki, W. Dynamical problems of thermodiffusion in solids II. Bull. Acad. Pol. Sci. Ser. Sci. Tech. 1974, 22, 129–135. [Google Scholar]
- Nowacki, W. Dynamical problems of thermo diffusion in solid III. Bull. Acad. Pol. Sci. Ser. Sci. Tech. 1974, 22, 266–275. [Google Scholar]
- Sherief, H.H.; Hamza, F.A.; Saleh, H.A. The theory of generalized thermoelastic diffusion. Int. J. Eng. Sci. 2004, 42, 591–608. [Google Scholar] [CrossRef]
- Sherief, H.H.; Saleh, H.A. A half-space problem in the theory of generalized thermoelastic diffusion. Int. J. Solids Struct. 2005, 42, 4484–4493. [Google Scholar] [CrossRef]
- Sherief, H.H.; El-Maghraby, N.M. A Thick Plate Problem in the Theory of Generalized Thermoelastic Diffusion. Int. J. Thermophys. 2009, 30, 2044–2057. [Google Scholar] [CrossRef]
- Abouelregal, A.E. Generalized mathematical novel model of thermoelastic diffusion with four phase lags and higher-order time derivative. Eur. Phys. J. Plus 2020, 135, 1–21. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Elhagary, M.A.; Soleiman, A.; Khalil, K.M. Generalized thermoelastic-diffusion model with higher-order fractional time-derivatives and four-phase-lags. Mech. Based Des. Struct. Mach. 2020, 1–18. [Google Scholar] [CrossRef]
- Kansal, T. Fundamental solution of the system of equations of pseudo oscillations in the theory of thermoelastic diffusion materials with double porosity. Multidiscip. Model. Mater. Struct. 2019, 15, 317–336. [Google Scholar] [CrossRef]
- Abo-Dahab, S.M.; Abd-Alla, A.M. Dual-phase-lag model on magneto-thermoelastic rotating medium with voids and diffusion under the effect of initial stress and gravity. Heat Transf. 2020, 49, 2131–2166. [Google Scholar] [CrossRef]
- Reddy, P.S.; Rao, V.P. Thermo-diffusion and diffusion-thermo effects on convective heat and mass transfer through a porous medium in a circular cylindrical annulus with quadratic density temperature variation-finite element study. J. Appl. Fluid Mech. 2012, 5, 139–144. [Google Scholar]
- Paul, K.; Mukhopadhyay, B. A Generalized thermo-elastic diffusion problem in a functionally graded rotating media using fractional order theory. J. Solid Mech. 2020, 12, 263–277. [Google Scholar]
- Giorgi, C.; Grandi, D.; Pata, V. On the Green-Naghdi Type III heat conduction model. Discret. Contin. Dyn. Syst. B 2014, 19, 2133–2143. [Google Scholar] [CrossRef]
- Aouadi, M. Uniqueness and Reciprocity Theorems in the Theory of Generalized Thermoelastic Diffusion. J. Therm. Stress. 2007, 30, 665–678. [Google Scholar] [CrossRef]
- Lasiecka, I.; Wang, X. Moore–Gibson–Thompson equation with memory, part II: General decay of energy. J. Differ. Equ. 2015, 259, 7610–7635. [Google Scholar] [CrossRef]
- Lasiecka, I.; Wang, X. Moore–Gibson–Thompson equation with memory, part I: Exponential decay of energy. Zeitschrift für Angewandte Mathematik und Physik 2016, 67, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Aouadi, M.; Lazzari, B.; Nibbi, R. A theory of thermoelasticity with diffusion under Green-Naghdi models. ZAMM 2013, 94, 837–852. [Google Scholar] [CrossRef]
- Lazzari, B.; Nibbi, R. Energy decay in Green–Naghdi thermoelasticity with diffusion and dissipative boundary controls. J. Therm. Stress. 2016, 40, 1–11. [Google Scholar] [CrossRef]
- Kryzhniy, V.V. Numerical inversion of the Laplace transform: Analysis via regulariz ed analytic continuation. Inverse Probl. 2006, 22, 579–597. [Google Scholar] [CrossRef]
- Dong, C.W. A Regularization Method for the Numerical Inversion of the Laplace Transform. SIAM J. Numer. Anal. 1993, 30, 759–773. [Google Scholar] [CrossRef]
- Honig, G.; Hirdes, U. A method for the numerical inversion of Laplace transforms. J. Comput. Appl. Math. 1984, 10, 113–132. [Google Scholar] [CrossRef] [Green Version]
- Piessens, R.; Dang, N. A bibliography on numerical inversion of the laplace transform and applications: A supplement. J. Comput. Appl. Math. 1976, 2, 225–228. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, G.V.; Beskos, D.E. Numerical operational methods for time-dependent linear problems. Int. J. Numer. Methods Eng. 1982, 18, 1829–1854. [Google Scholar] [CrossRef]
- Dubner, H.; Abate, J. Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform. J. Assoc. Comput. Mach. 1968, 15, 115–123. [Google Scholar] [CrossRef]
- Abate, J.; Valkó, P.P. Multi-precision Laplace transform inversion. Int. J. Numer. Methods Eng. 2004, 60, 979–993. [Google Scholar] [CrossRef]
- Durbin, F. Numerical inversion of Laplace transforms: An effective improvement of Dubner and Abate’s method. Comput. J. 1973, 17, 371–376. [Google Scholar] [CrossRef]
- Wan, D.C.; Patnaik, B.S.V.; Wei, G.W. A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution. Numer. Heat Transf. Part B Fundam. 2001, 40, 199–228. [Google Scholar]
- Zhou, Y.C.; Patnaik, B.S.V.; Wan, D.C.; Wei, G.W. DSC solution for flow in a staggered double lid driven cavity. Int. J. Numer. Methods Eng. 2003, 57, 211–234. [Google Scholar] [CrossRef]
- Chernov, A.; Reinarz, A. Sparse grid approximation spaces for space–time boundary integral formulations of the heat equation. Comput. Math. Appl. 2019, 78, 3605–3619. [Google Scholar] [CrossRef] [Green Version]
CTED | CTED | GND-II | GND-III | MGTED | |
---|---|---|---|---|---|
1.0 | 0.482375 | 0.482375 | 0.482375 | 0.482375 | 0.482375 |
1.2 | 0.295083 | 0.243376 | 0.277035 | 0.308172 | 0.258926 |
1.4 | 0.182314 | 0.123602 | 0.160531 | 0.198940 | 0.140311 |
1.6 | 0.113203 | 0.0625852 | 0.0932805 | 0.129202 | 0.0762489 |
1.8 | 0.0703235 | 0.0311688 | 0.0540023 | 0.084112 | 0.0412362 |
2.0 | 0.0434885 | 0.0149006 | 0.0308823 | 0.0546925 | 0.0219489 |
2.2 | 0.0265966 | 0.00647244 | 0.0172123 | 0.0353729 | 0.0112778 |
2.4 | 0.0159271 | 0.0021343 | 0.00912002 | 0.0226299 | 0.00537005 |
2.6 | 0.00918038 | 5.9651 × 10−5 | 0.00434163 | 0.0142029 | 0.00211293 |
2.8 | 0.00492057 | 1.1276 × 10−5 | 0.0015413 | 0.00862565 | 0.000337224 |
3.0 | 0.00224365 | 1.6055 × 10−5 | 0.000075166 | 0.00493878 | 0.000608679 |
CTED | CTED | GND-II | GND-III | MGTED | |
---|---|---|---|---|---|
1.0 | −0.079734 | −0.081456 | −0.099797 | −0.099287 | −0.074101 |
1.2 | 0.00409436 | 0.00133869 | 0.00216732 | 0.00452298 | 0.00362599 |
1.4 | 0.00905289 | 0.00598837 | 0.00779358 | 0.0106263 | 0.00823209 |
1.6 | 0.00538761 | 0.00330092 | 0.00482924 | 0.00685372 | 0.00474181 |
1.8 | 0.00287224 | 0.00167184 | 0.00275236 | 0.00392333 | 0.00246476 |
2.0 | 0.00160078 | 0.000948539 | 0.00169206 | 0.00228376 | 0.0013645 |
2.2 | 0.00098475 | 0.000627214 | 0.00115203 | 0.00141395 | 0.000850296 |
2.4 | 0.000674483 | 0.000465978 | 0.00085086 | 0.000945582 | 0.000595687 |
2.6 | 0.000504701 | 0.000370188 | 0.000662123 | 0.000681815 | 0.000455172 |
2.8 | 0.000401442 | 0.000304314 | 0.000531199 | 0.000523657 | 0.000367178 |
3.0 | 0.000331688 | 0.000254552 | 0.00043369 | 0.000421697 | 0.000305562 |
CTED | CTED | GND-II | GND-III | MGTED | |
---|---|---|---|---|---|
1.0 | 0 | 0 | 0 | 0 | 0 |
1.2 | −0.854538 | −0.363519 | −0.612671 | −1.0998 | −0.506898 |
1.4 | −0.426424 | −0.150462 | −0.280248 | −0.584935 | −0.242656 |
1.6 | −0.225884 | −0.0670708 | −0.137284 | −0.326984 | −0.124743 |
1.8 | −0.123914 | −0.0310105 | −0.0697059 | −0.189105 | −0.0664459 |
2.0 | −0.0694617 | −0.0146615 | −0.0361796 | −0.111722 | −0.0361722 |
2.2 | −0.0395136 | −0.00703726 | −0.0190601 | −0.0669692 | −0.0199845 |
2.4 | −0.0227178 | −0.0034148 | −0.01015 | −0.0405677 | −0.0111598 |
2.6 | −0.0131671 | −0.00167074 | −0.00544939 | −0.0247716 | −0.00628256 |
2.8 | −0.00768002 | −0.000822742 | −0.0029445 | −0.0152214 | −0.00355943 |
3.0 | −0.00450248 | −0.000407266 | −0.00159924 | −0.0094005 | −0.00202698 |
CTED | CTED | GND-II | GND-III | MGTED | |
---|---|---|---|---|---|
1.0 | −0.372282 | −0.376351 | −0.372118 | −0.373018 | −0.37111 |
1.2 | −0.852663 | −0.362632 | −0.611177 | −1.09758 | −0.505897 |
1.4 | −0.426185 | −0.150271 | −0.280019 | −0.584682 | −0.242504 |
1.6 | −0.225779 | −0.0669935 | −0.137185 | −0.326875 | −0.124674 |
1.8 | −0.12386 | −0.0309766 | −0.0696585 | −0.189046 | −0.0664112 |
2.0 | −0.0694327 | −0.014646 | −0.0361559 | −0.111689 | −0.036154 |
2.2 | −0.0394976 | −0.00702998 | −0.0190479 | −0.0669499 | −0.0199748 |
2.4 | −0.0227088 | −0.00341133 | −0.0101436 | −0.0405563 | −0.0111544 |
2.6 | −0.0131619 | −0.00166907 | −0.00544603 | −0.0247648 | −0.00627961 |
2.8 | −0.00767706 | −0.000821926 | −0.0029427 | −0.0152172 | −0.00355778 |
3.0 | −0.00450077 | −0.000406865 | −0.00159828 | −0.00939798 | −0.00202605 |
CTED | CTED | GND-II | GND-III | MGTED | |
---|---|---|---|---|---|
1.0 | 1.013155 | 1.013155 | 1.013155 | 1.013155 | 1.013155 |
1.2 | 15.8287 | 5.60381 | 10.4178 | 21.6918 | 9.01363 |
1.4 | 4.60106 | 1.15509 | 2.59169 | 7.01602 | 2.46841 |
1.6 | 1.4672 | 0.262133 | 0.708675 | 2.48466 | 0.742418 |
1.8 | 0.488918 | 0.062235 | 0.202616 | 0.919069 | 0.233397 |
2.0 | 0.167186 | 0.0151707 | 0.0594624 | 0.348776 | 0.0753026 |
2.2 | 0.0581515 | 0.0037628 | 0.0177532 | 0.134612 | 0.0247144 |
2.4 | 0.0204726 | 0.000944823 | 0.00536546 | 0.0525816 | 0.00821032 |
2.6 | 0.0072729 | 0.000239424 | 0.00163639 | 0.0207244 | 0.00275235 |
2.8 | 0.00260187 | 6.11038 × 10−5 | 0.00050261 | 0.00822539 | 0.000929177 |
3.0 | 0.000936034 | 1.56829 × 10−5 | 0.000155245 | 0.00328282 | 0.000315449 |
CTED | CTED | GND-II | GND-III | MGTED | |
---|---|---|---|---|---|
1.0 | 0.117031 | 0.116954 | 0.117034 | 0.117017 | 0.117052 |
1.2 | 0.850402 | 0.364377 | 0.611294 | 1.09261 | 0.506495 |
1.4 | 0.427816 | 0.151386 | 0.281513 | 0.58636 | 0.243597 |
1.6 | 0.226681 | 0.0674881 | 0.137925 | 0.327908 | 0.125236 |
1.8 | 0.124353 | 0.0312044 | 0.0700328 | 0.189644 | 0.0667094 |
2.0 | 0.0697087 | 0.0147534 | 0.0363497 | 0.112041 | 0.0363159 |
2.2 | 0.0396543 | 0.00708146 | 0.0191498 | 0.0671608 | 0.0200641 |
2.4 | 0.0227988 | 0.00343627 | 0.0101978 | 0.0406839 | 0.0112042 |
2.6 | 0.0132141 | 0.00168126 | 0.0054751 | 0.0248426 | 0.00630761 |
2.8 | 0.00770743 | 0.000827926 | 0.0029584 | 0.015265 | 0.00357363 |
3.0 | 0.00451856 | 0.000409833 | 0.00160679 | 0.00942747 | 0.00203507 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abouelregal, A.E.; Ersoy, H.; Civalek, Ö. Solution of Moore–Gibson–Thompson Equation of an Unbounded Medium with a Cylindrical Hole. Mathematics 2021, 9, 1536. https://doi.org/10.3390/math9131536
Abouelregal AE, Ersoy H, Civalek Ö. Solution of Moore–Gibson–Thompson Equation of an Unbounded Medium with a Cylindrical Hole. Mathematics. 2021; 9(13):1536. https://doi.org/10.3390/math9131536
Chicago/Turabian StyleAbouelregal, Ahmed E., Hakan Ersoy, and Ömer Civalek. 2021. "Solution of Moore–Gibson–Thompson Equation of an Unbounded Medium with a Cylindrical Hole" Mathematics 9, no. 13: 1536. https://doi.org/10.3390/math9131536
APA StyleAbouelregal, A. E., Ersoy, H., & Civalek, Ö. (2021). Solution of Moore–Gibson–Thompson Equation of an Unbounded Medium with a Cylindrical Hole. Mathematics, 9(13), 1536. https://doi.org/10.3390/math9131536