Approximation of Endpoints for α—Reich–Suzuki Nonexpansive Mappings in Hyperbolic Metric Spaces
Abstract
:1. Introduction
2. Preliminaries
- (i)
- ,
- (ii)
- ,
- (iii)
- ,
- (iv)
- (a)
- is a fixed point of T.
- (b)
- is an endpoint of T.
3. Main Result
4. Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mann, W.R. Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]
- Ishikawa, S. Fixed points by a new iteration method. Proc. Am. Math. Soc. 1974, 44, 147–150. [Google Scholar] [CrossRef]
- Halpern, B. Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 1967, 73, 957–961. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Regan, D.O.; Sahu, D.R. Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Nonlinear Convex Anal. 2007, 1, 61–79. [Google Scholar]
- Noor, M.A. New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 2000, 251, 217–229. [Google Scholar] [CrossRef] [Green Version]
- Ullah, K.; Arshad, M. Numerical reckoning fixed points for Suzuki’s generalized nonexpansive mappings via new iteration process. Filomat 2018, 32, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Sastry, K.P.R.; Babu, G.V.R. Convergence of Ishikawa iterates for a multivalued mappings with a fixed point. Czechoslov. Math. J. 2005, 55, 817–826. [Google Scholar] [CrossRef] [Green Version]
- Panyanak, B. Mann and Ishikawa iteration processes for multivalued mappings in Banach spaces. Comput. Math. Appl. 2007, 54, 872–877. [Google Scholar] [CrossRef] [Green Version]
- Rus, I.A. Strict fixed point theory. Fixed Point Theory 2003, 4, 177–183. [Google Scholar]
- Aubin, J.P.; Siegel, J. Fixed points and stationary points of dissipative multivalued maps. Proc. Am. Math. Soc. 1980, 78, 391–398. [Google Scholar] [CrossRef]
- Chen, L.; Gao, L.; Chen, D. Fixed point theorems of mean nonexpansive set valued mappings in Banach spaces. J. Fixed Point Theory Appl. 2017, 19, 2129–2143. [Google Scholar] [CrossRef]
- Espinola, R.; Hosseini, M.; Nourouzi, K. On stationary points of nonexpansive set valued mappings. Fixed Point Theory Appl. 2015, 236, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, M.; Nourouzi, K.; O’Regan, D. Stationary points of set valued contractive and noexpansive mappings on ultrametric spaces. Fixed Point Theory 2018, 19, 587–594. [Google Scholar] [CrossRef] [Green Version]
- Petrusel, A.; Petrusel, G. On Reich’s strict fixed point theorem for multi-valued operators in complete metric spaces. J. Nonlinear Var. Anal. 2018, 2, 103–112. [Google Scholar]
- Panyanak, B. Endpooints of multivalued nonexpansive mappings in geodesic spaces. Fixed Point Theory Appl. 2015, 147, 1–11. [Google Scholar]
- Reich, S. Fixed points of contractive functions. Boll. dell’Unione Math. Ital. 1972, 5, 26–42. [Google Scholar]
- Saejung, S. Remarks on endpoints of multivalued mappings on geodesic spaces. Fixed Point Thoery Appl. 2016, 52, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Panyanak, B. Approximating endpoints of multivalued nonexpansive mappings in Banach spaces. J. Fixed Point Theory Appl. 2018, 20, 1–8. [Google Scholar] [CrossRef]
- Chuadchawna, P.; Farajzadeh, A.; Kaewcharoen, A. Convergence theorems and approximating endpoints for multivalued Suzuki mappings in hyperbolic spaces. J. Comput. Anal. Appl. 2020, 28, 903–916. [Google Scholar]
- Kudtha, A.; Panyanak, B. Common endpoints for Suzuki mappings in Uniformly convex Hyperbolic spaces. Thai J. Math. 2018, 159–168. Available online: http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/view/3183 (accessed on 31 May 2021).
- Pandey, R.; Pant, R.; Rakoc˘evicˇ, V.; Shukla, R. Approximating fixed points of a general class of nonexpansive mappings in Banach spaces with applications. Results Math. 2019, 74, 1–24. [Google Scholar] [CrossRef]
- Reich, S.; Shafrir, I. Nonexpansive iterations in hyperblic spaces. Nonlinear Anal. 1990, 15, 537–558. [Google Scholar] [CrossRef]
- Kohlenbach, U. Some logical metaheorems with application in functional analysis. Trans. Am. Math. Soc. 2005, 357, 89–128. [Google Scholar] [CrossRef] [Green Version]
- Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 1984. [Google Scholar]
- Goebel, K.; Sekowski, T.; Stachura, A. Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball. Nonlinear Anal. TMA 1980, 4, 1011–1021. [Google Scholar] [CrossRef]
- Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Laokul, T.; Panyanak, B. A generalization of the (CN) inequality and its application. Carpathian J. Math. 2020, 36, 81–90. [Google Scholar] [CrossRef]
- Dhompongsa, S.; Kirk, W.; Panyanak, B. Nonexpansive set-valued mappings in metric and Banach spaces. J. Nonlinear Convex Anal. 2007, 8, 35–45. [Google Scholar]
- Abdeljawad, T.; Ullah, K.; Ahmad, J.; Mlaiki, N. Iterative Approximation of Endpoints for Multivalued Mappings in Banach Spaces. J. Funct. Spaces 2020. [Google Scholar] [CrossRef]
- Ullah, K.; Ahmad, J.; Arshad, M.; de la Sen, M.; Khan, M.S.U. Approximating Stationary Points of Multivalued Generalized Nonexpansive Mappings in Metric Spaces. Adv. Math. Phys. 2020. [Google Scholar] [CrossRef]
- Ullaha, K.; Ahmada, J.; Muhammada, N. Approximation of endpoints for multi-valued mappings in metric spaces. J. Linear Topol. Algebra 2020, 9, 129–137. [Google Scholar]
- Ullah, K.; Khan, M.S.U.; Muhammad, N.; Ahmad, J. Approximation of endpoints for multivalued nonexpansive mappings in geodesic spaces. Asian-Eur. J. Math. 2020, 13, 2050141. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uddin, I.; Aggarwal, S.; Abdou, A.A.N. Approximation of Endpoints for α—Reich–Suzuki Nonexpansive Mappings in Hyperbolic Metric Spaces. Mathematics 2021, 9, 1692. https://doi.org/10.3390/math9141692
Uddin I, Aggarwal S, Abdou AAN. Approximation of Endpoints for α—Reich–Suzuki Nonexpansive Mappings in Hyperbolic Metric Spaces. Mathematics. 2021; 9(14):1692. https://doi.org/10.3390/math9141692
Chicago/Turabian StyleUddin, Izhar, Sajan Aggarwal, and Afrah A. N. Abdou. 2021. "Approximation of Endpoints for α—Reich–Suzuki Nonexpansive Mappings in Hyperbolic Metric Spaces" Mathematics 9, no. 14: 1692. https://doi.org/10.3390/math9141692
APA StyleUddin, I., Aggarwal, S., & Abdou, A. A. N. (2021). Approximation of Endpoints for α—Reich–Suzuki Nonexpansive Mappings in Hyperbolic Metric Spaces. Mathematics, 9(14), 1692. https://doi.org/10.3390/math9141692