Space Analyticity and Bounds for Derivatives of Solutions to the Evolutionary Equations of Diffusive Magnetohydrodynamics
Abstract
:1. Introduction
- To carry over the a priori bounds for arbitrary-order space derivatives of solutions to the Navier–Stokes equation to space-periodic solutions to the equations of diffusive magnetohydrodynamics;
- To derive similar a priori bounds for arbitrary-order space derivatives of the first-order time derivative of the Fourier–Galerkin approximants and to prove that the bounds are admitted by weak solutions to the equations of magnetohydrodynamics;
- To reveal a link between these bounds and space analyticity of the MHD solutions at almost all times.
2. Statement of the Problem
3. Instantaneous Onset of Space Analyticity
4. An a Priori Bound for Approximants of Solutions to the Auxiliary Problem
4.1. A Transformation of Solutions to (4) and the Auxiliary System of Equations
4.2. The “Energy” Bound for the Transformed Solutions
5. A Priori Bounds for Approximants of Solutions to the System (4)
5.1. Bounds in the Sobolev Space Norms
5.2. A Priori Bounds for the Wiener Algebra Norm
6. A Priori Bounds for Time Derivatives of Solutions to the System (4)
6.1. Bounds in the Sobolev Space Norms
6.2. Bounds in the Wiener Algebra Norms
6.3. Bounds for Time Derivatives Stemming from the Inequalities (32)
7. From A Priori Bounds to Bounds for Weak Solutions
7.1. Justification of the Bounds (32) for the Weak Solutions
7.2. A Bound for and for
7.3. The Singularity Set of Solutions to Equations of Magnetohydrodynamics
- i.
- The set is open. The Lebesgue measure of the complement is zero.
- ii.
- For any , maximal -regularity intervals coincide with maximal intervals of space analyticity.
- iii.
7.4. Application of (53) for Proving the Bounds (36) for Weak Solutions
8. Concluding Remarks
Funding
Conflicts of Interest
References
- Leray, J. Essai sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 1934, 63, 193–248. [Google Scholar] [CrossRef]
- Hopf, E. Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 1951, 4, 213–231. [Google Scholar] [CrossRef]
- Ladyzhenskaya, O.A. The Mathematical Theory of Viscous Incompressible Flow, 2nd ed.; Gordon and Breach: New York, USA, 1969. (In Russian) [Google Scholar]
- Robinson, J.C. The Navier–Stokes regularity problem. Philos. Trans. R. Soc. A 2020, 378, 20190526. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.C.; Rodrigo, J.L.; Sadowski, W. The Three-Dimensional Navier–Stokes Equations; Cambridge Studies in Advanced Mathematics, 157; CUP: Cambridge, UK, 2016. [Google Scholar]
- Temam, R. Navier–Stokes Equations and Nonlinear Functional Analysis, 2nd ed.; SIAM: Philadelphia, PA, USA, 1983. [Google Scholar]
- Golovkin, K.K.; Ladyzhenskaya, O.A. Solutions of non-stationary boundary value problems for Navier–Stokes equations. Trudy Mat. Inst. Steklov 1960, 59, 100–114. [Google Scholar]
- Solonnikov, V.A. Estimates for solutions of a non-stationary linearized system of Navier–Stokes equations. Trudy Mat. Inst. Steklov 1964, 70, 213–317. [Google Scholar]
- Escauriaza, L.; Seregin, G.A.; Šverák, V. L3,∞-solutions of Navier–Stokes equations and backward uniqueness. Usp. Mat. Nauk 2003, 58, 3–44. (In Russian). English transl.: Russ. Math. Surv. 2003, 58, 211–250 [Google Scholar] [CrossRef]
- Kiselev, A.; Ladyzhenskaya, O. On the existence and uniqueness of the solution of the nonstationary problem for a viscous, incompressible fluid. Izv. Akad. Nauk SSSR Ser. Mat. 1957, 21, 655–680. [Google Scholar]
- Prodi, G. Un teorema di unicità per le equazioni di Navier–Stokes. Ann. Mat. Pura Appl. 1959, 48, 173–182. [Google Scholar] [CrossRef]
- Serrin, J. On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 1962, 9, 187–195. [Google Scholar] [CrossRef]
- Foias, C.; Temam, R. Gevrey class regularity for the solutions of the Navier–Stokes equations. J. Funct. Anal. 1989, 87, 359–369. [Google Scholar] [CrossRef] [Green Version]
- Doering, C.R.; Titi, E.S. Exponential decay rate of the power spectrum for solutions of the Navier–Stokes equations. Phys. Fluids 1995, 7, 1384–1390. [Google Scholar] [CrossRef]
- Doering, C.R.; Gibbon, J.D. Applied Analysis of the Navier–Stokes Equations; CUP: Cambridge, UK, 1995. [Google Scholar]
- Foias, C.; Manley, O.; Rosa, R.; Temam, R. Navier–Stokes Equations and Turbulence; (Encyclopedia of mathematics and its applications, 83); CUP: Cambridge, UK, 2001. [Google Scholar]
- Foias, C.; Guillopé, C.; Temam, R. New a priori estimates for Navier–Stokes equations in dimension 3. Commun. Partial Differ. Equ. 1981, 6, 329–359. [Google Scholar] [CrossRef]
- Gibbon, J.D. Derivation of 3d Navier–Stokes length scales from a result of Foias, Guillopé and Temam. Nonlinearity 1994, 7, 245–252. [Google Scholar] [CrossRef]
- Gibbon, J.D. A voyage around the Navier–Stokes equations. Physica D 1996, 92, 133–139. [Google Scholar] [CrossRef]
- Bartuccelli, M.V.; Doering, C.R.; Gibbon, J.D.; Malham, S.J.A. Length scales in solutions of the Navier–Stokes equations. Nonlinearity 1993, 6, 549–568. [Google Scholar] [CrossRef] [Green Version]
- Gibbon, J.D. Regularity and singularity in solutions of the three-dimensional Navier–Stokes equations. Proc. R. Soc. A 2010, 466, 2587–2604. [Google Scholar] [CrossRef]
- Gibbon, J.D. Weak and strong solutions of the 3D Navier–Stokes equations and their relation to a chessboard of convergent inverse length scales. J. Nonlinear Sci. 2019, 29, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Bradshaw, Z.; Grujić, Z.; Kukavica, I. Analyticity radii and the Navier–Stokes equations: Recent results and applications. In Recent Progress in the Theory of the Euler and Navier–Stokes Equations; Robinson, J.C., Rodrigo, J.L., Sadowski, W., Vidal-López, A., Eds.; CUP: Cambridge, UK, 2016; pp. 22–36. [Google Scholar]
- Biswas, A.; Foias, C. On the maximal space analyticity radius for the 3D Navier–Stokes equations and energy cascades. Ann. Mat. 2014, 193, 739–777. [Google Scholar] [CrossRef]
- Zheligovsky, V. A priori bounds for Gevrey–Sobolev norms of space-periodic three-dimensional solutions to equations of hydrodynamic type. Adv. Differ. Equ. 2011, 16, 955–976. [Google Scholar]
- Chae, D.; Chae, D. Remarks on the regularity of weak solutions of the Navier–Stokes equations. Commun. Partial Differ. Equ. 1992, 17, 359–369. [Google Scholar] [CrossRef]
- Scheffer, V. Turbulence and Hausdorff dimension. In Turbulence and the Navier–Stokes Equations; Lecture Notes in Mathematics, 565; Temam, R., Ed.; Springer: Berlin/Heidelberg, Germany, 1976; pp. 94–112. [Google Scholar]
- Scheffer, V. Partial regularity of solutions to the Navier–Stokes equations. Pac. J. Math. 1976, 66, 535–552. [Google Scholar] [CrossRef] [Green Version]
- Scheffer, V. Hausdorff measure and the Navier–Stokes equations. Commun. Math. Phys. 1977, 55, 97–112. [Google Scholar] [CrossRef]
- Scheffer, V. The Navier–Stokes equations on a bounded domain. Commun. Math. Phys. 1980, 73, 1–42. [Google Scholar] [CrossRef]
- Caffarelli, L.; Kohn, R.; Nirenberg, L. Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 1982, 35, 771–931. [Google Scholar] [CrossRef]
- Donzis, D.A.; Gibbon, J.D.; Gupta, A.; Kerr, R.M.; Pandit, R.; Vincenzi, D. Vorticity moments in four numerical simulations of the 3D Navier–Stokes equations. J. Fluid Mech. 2013, 732, 316–331. [Google Scholar] [CrossRef] [Green Version]
- Duvaut, G.; Lions, J.L. Inéquations en thérmoelasticité et magnétohydrodynamique. Arch. Rat. Mech. Anal. 1972, 46, 241–279. [Google Scholar] [CrossRef]
- Foias, C.; Temam, R. Determination of the solutions of the Navier–Stokes equations by a set of nodal values. Math. Comput. 1984, 43, 117–133. [Google Scholar] [CrossRef]
- Sermange, M.; Temam, R. Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math. 1983, 36, 635–664. [Google Scholar] [CrossRef] [Green Version]
- Kim, S. Gevrey class regularity of the magnetohydrodynamics equations. ANZIAM J. 2002, 43, 397–408. [Google Scholar] [CrossRef] [Green Version]
- Peetre, J. Espaces d’interpolation et théorème de Sobolev. Ann. Inst. Fourier 1966, 16, 279–317. [Google Scholar] [CrossRef] [Green Version]
- Adams, R.A.; Fournier, J.J.F. Sobolev Spaces, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Bergh, J.; Löfström, J. Interpolation Spaces. An Introduction; Springer: Berlin/Heidelberg, Germany, 1976. [Google Scholar]
- Lions, J.L. Quelque Méthodes de Résolution des Problèmes aux Limites Non Linéaires; Dunod: Paris, France, 1969. [Google Scholar]
- Maz’ja, V.G. Sobolev Spaces; Springer Series in Soviet Mathematics; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Triebel, H. Interpolation Theory. Function Spaces. Differential Operators; VEB Deutscher Verlag der Wissenschaften: Berlin, Germany, 1978. [Google Scholar]
- Levermore, C.D.; Oliver, M. Analyticity of solutions for a generalized Euler equation. J. Differ. Equ. 1997, 133, 321–339. [Google Scholar] [CrossRef] [Green Version]
- Oliver, M.; Titi, E.S. Remark on the rate of decay of higher order derivatives for solutions to the Navier–Stokes equations in Rn. J. Funct. Anal. 2000, 172, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Biswas, A.; Jolly, M.S.; Martinez, V.R.; Titi, E.S. Dissipation length scale estimates for turbulent flows: A Wiener algebra approach. J. Nonlinear Sci. 2014, 24, 441–471. [Google Scholar] [CrossRef] [Green Version]
- Frisch, U.; Zheligovsky, V. A very smooth ride in a rough sea. Comm. Math. Phys. 2014, 326, 499–505. [Google Scholar] [CrossRef] [Green Version]
- Zheligovsky, V.; Frisch, U. Time-analyticity of Lagrangian particle trajectories in ideal fluid flow. J. Fluid Mech. 2014, 749, 404–430. [Google Scholar] [CrossRef] [Green Version]
- Tartar, L. Topics in Nonlinear Analysis; Publications Mathématiques d’Orsay, Université Paris-Sud: Le Kremlin-Bicêtre, France, 1978. [Google Scholar]
- Weir, A.J. Lebesgue Integration and Measure; CUP: Cambridge, UK, 1973. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheligovsky, V. Space Analyticity and Bounds for Derivatives of Solutions to the Evolutionary Equations of Diffusive Magnetohydrodynamics. Mathematics 2021, 9, 1789. https://doi.org/10.3390/math9151789
Zheligovsky V. Space Analyticity and Bounds for Derivatives of Solutions to the Evolutionary Equations of Diffusive Magnetohydrodynamics. Mathematics. 2021; 9(15):1789. https://doi.org/10.3390/math9151789
Chicago/Turabian StyleZheligovsky, Vladislav. 2021. "Space Analyticity and Bounds for Derivatives of Solutions to the Evolutionary Equations of Diffusive Magnetohydrodynamics" Mathematics 9, no. 15: 1789. https://doi.org/10.3390/math9151789
APA StyleZheligovsky, V. (2021). Space Analyticity and Bounds for Derivatives of Solutions to the Evolutionary Equations of Diffusive Magnetohydrodynamics. Mathematics, 9(15), 1789. https://doi.org/10.3390/math9151789