Next Article in Journal
Polynomial Analogue of Gandy’s Fixed Point Theorem
Previous Article in Journal
Continuum Scale Non Newtonian Particle Transport Model for Hæmorheology
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

New Inequalities of Cusa–Huygens Type

Department of Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China
Mathematics 2021, 9(17), 2101; https://doi.org/10.3390/math9172101
Submission received: 16 July 2021 / Revised: 26 August 2021 / Accepted: 27 August 2021 / Published: 31 August 2021
(This article belongs to the Section Mathematics and Computer Science)

Abstract

:
Using the power series expansions of the functions cot x , 1 / sin x and 1 / sin 2 x , and the estimate of the ratio of two adjacent even-indexed Bernoulli numbers, we improve Cusa–Huygens inequality in two directions on 0 , π / 2 . Our results are much better than those in the existing literature.

1. Introduction

For x ( 0 , π / 2 ) , we know that the functions cos x and ( sin x ) / x are less than 1. In order to confirm the relationship between ( sin x ) / x and the weighted arithmetic mean of cos x and 1, we can examine the Taylor expansion of the following function:
sin x x 1 β + β cos x = n = 1 1 n 1 β 2 n + 1 2 n + 1 ! x 2 n = x 2 1 2 β 1 6 x 4 1 24 β 1 120 + n = 3 1 n 1 β 2 n + 1 2 n + 1 ! x 2 n .
Obviously, when choosing β = 1 / 3 we can get the following fact:
sin x x 2 3 + 1 3 cos x = 1 180 x 4 + 1 3780 x 6 + O ( x 8 ) ,
which inspires us to prove that for 0 < x < π / 2 ,
sin x x < 2 3 + 1 3 cos x
or
3 sin x 2 + cos x < x .
The existing mathematical historical data (see [1,2,3,4,5,6,7,8]) show that the above inequality (2) was discovered by Nicolaus De Cusa (1401–1464) using a geometrical method in 1451 and was later in 1664 confirmed by Christian Huygens (1629–1695) when considering the estimation of π . Because of the contribution of Nicolaus De Cusa and Christian Huygens to this inequality (1), we call it Cusa–Huygens inequality. Recently, Zhu [9] provided two improvements of (2) as follows.
Proposition 1
([9]). The inequalities,
1 180 x 5 < x 3 sin x 2 + cos x
and
1 2100 x 7 < x 3 sin x 2 + cos x 1 + ( 1 cos x ) 2 9 ( 3 + 2 cos x )
hold for all x 0 , π , where 1 / 180 and 1 / 2100 are the best constants in previous inequalities, respectively.
The results of the previous proposition are corrections of Theorem 3.4.20 from monograph Mitrinović [7]. Malešević et al. made a bilateral supplement to the above two inequalities.
This paper focuses on the improvement of (1). Chen and Cheung [10] gave the bounds for sin x / x in terms of 2 + cos x / 3 δ as follows:
2 + cos x 3 θ 0 < sin x x < 2 + cos x 3 ϑ 0
holds for all 0 < x < π / 2 , where ϑ 0 = 1 and θ 0 = ( ln π ln 2 ) / ( ln 3 ln 2 ) are the best possible constants in (5). The double inequality (5) was proved by Bagul [11] and Zhu [12] in different ways. In Zhu [12] the inequality (1) was found to be true for the broader interval , 0     0 , . There are many useful discussions in the literature about the above inequality (1) and its related topics; for interested readers, please refer to [13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46].
In Zhu [12], we can find three new improvements to inequality (1):
1 x 3 π 3 2 + cos x 3 < sin x x < 1 x 4 180 cos x + 2 3 ,
1 + 8 π 3 π 3 x 2 2 + cos x 3 8 π 3 π 3 x 2 < sin x x < 1 + 1 30 x 2 2 + cos x 3 1 30 x 2 ,
and
1 + 1 30 x 2 + 2 240 π π 3 720 15 π 5 x 4 2 + cos x 3 1 30 x 2 + 2 240 π π 3 720 15 π 5 x 4 < sin x x < 1 + 1 30 x 2 + 1 840 x 4 2 + cos x 3 1 30 x 2 + 1 840 x 4 ,
hold for 0 < x < π / 2 .
Bercu [47] used the truncations of the Fourier cosine series to the inequality (1) and obtained an enhanced form of (1):
sin x x 2 + cos x 3 < 1 45 1 cos x 2 , 0 < x < π 2 .
Recently, Bagul et al. [48] drew two conclusions about the improvement of inequality (1):
2 3 2 π 1 π / 2 1 x sin x < sin x x 2 + cos x 3 < 2 3 2 π 1 π / 2 1 2 x sin x 2
and
2 3 2 π sin x x cos x < sin x x 2 + cos x 3 < 2 3 2 π sin x x cos x 2
hold for 0 < x < π / 2 .
Inspired by inequalities (9)–(11), this paper intends to improve the famous inequality (1) from two different directions and to draw two results as follows.
Theorem 1.
Let 0 < x < π / 2 . Then
sin x x 2 + cos x 3 < 1 180 x 4 sin x x 2 / 7
holds with the best constant 1 / 180 .
Theorem 2.
Let 0 < x < π / 2 . Then
sin x x 2 + cos x 3 < 2 3 2 π sin x x cos x π 2 12 / 3 π 2 π 3
holds with the best constant 2 / 3 2 / π .
In this paper, we use the power series expansions of two functions cot x and 1 / sin x and their derivative functions to prove the main conclusions. We know that the Taylor coefficients of these power series expansions are closely related to the Bernoulli number, which is related to the Riemann zeta function through the following identity:
ζ ( 2 n ) = 2 π 2 n 2 ( 2 n ) ! B 2 n , n N .
The latest research information on the Riemann zeta function can be found in Milovanović and Rassias [46].

2. Lemmas

Lemma 1.
Let B 2 n be the even-indexed Bernoulli numbers. Then (see [49,50,51])
cot x = 1 x n = 1 2 2 n 2 n ! | B 2 n | x 2 n 1 ,
1 sin 2 x = 1 x 2 + n = 1 2 n 1 2 2 n 2 n ! | B 2 n | x 2 n 2 ,
1 sin x = 1 x + n = 1 2 2 n 2 2 n ! | B 2 n | x 2 n 1 ,
cos x sin 2 x = 1 x 2 n = 1 2 n 1 2 2 n 2 2 n ! | B 2 n | x 2 n 2
hold for all x ( 0 , π ) .
Proof. 
From
1 sin 2 x = csc 2 x = cot x and cos x sin 2 x = 1 sin x ,
the power series expansions (15) and (17) follow.  □
Lemma 2
([52,53,54]). Let B 2 n be the even-indexed Bernoulli numbers, n = 1 , 2 , · · · . Then
2 2 n 1 1 2 2 n + 1 1 ( 2 n + 2 ) ( 2 n + 1 ) π 2 < | B 2 n + 2 | | B 2 n | < 2 2 n 1 2 2 n + 2 1 ( 2 n + 2 ) ( 2 n + 1 ) π 2 .
To prove our results, we also need the monotone form of the L’Hospital rule shown in [55,56,57] and the criterion for the monotonicity of the quotient of power series shown in [58].
Lemma 3
([55,56,57]). Let f , g : [ a , b ] R be two continuous functions, which are differentiable on ( a , b ) . Further, let g 0 on ( a , b ) . If f / g is increasing (or decreasing) on ( a , b ) , then the functions ( f ( x ) f ( b ) ) / ( g ( x ) g ( b ) ) and ( f ( x ) f ( a + ) ) / ( g ( x ) g ( a + ) ) are also increasing (or decreasing) on ( a , b ) .
Lemma 4
([58]). Let a n and b n ( n = 0 , 1 , 2 , · · · ) be real numbers, and let the power series A ( x ) = n = 0 a n x n and B ( x ) = n = 0 b n x n be convergent for x < R ( R + ) . If b n > 0 for n = 0 , 1 , 2 , · · · , and if ε n = a n / b n is strictly increasing (or decreasing) for n = 0 , 1 , 2 , · · · , then the function A ( x ) / B ( x ) is strictly increasing (or decreasing) on ( 0 , R ) ( R + ) .
Lemma 5.
Let 0 < x < π / 2 , and
φ = ln 2 / π ln 2 3 / 2 / π = 4.300 4 , ϕ = 4 .
Then
sin x / 2 x / 2 φ < sin x x < sin x / 2 x / 2 ϕ
holds with the optimal exponents ϕ and φ .
Proof. 
Let
Q ( x ) = ln sin x x ln sin x 2 x 2 = : a ( x ) b ( x ) , 0 < x < π 2 .
Then
a ( x ) = 1 x sin x sin x x cos x , b ( x ) = 1 2 x sin x 2 2 sin x 2 x cos x 2 = 1 2 x sin x 2 cos x 2 2 sin x 2 cos x 2 x cos 2 x 2 = 1 x sin x sin x x cos 2 x 2 = 1 2 x sin x 2 sin x 2 x cos 2 x 2 = 1 2 x sin x 2 sin x x cos x + 1 ,
and
a ( x ) b ( x ) = 1 x sin x sin x x cos x 1 2 x sin x 2 sin x x cos x + 1 = 2 sin x x cos x 2 sin x x cos x + 1 = 2 sin x x cos x sin x 2 sin x x cos x + 1 sin x = : 2 A ( x ) B ( x ) ,
where
A ( x ) = sin x x cos x sin x = 1 x cot x = 1 x 1 x n = 1 2 2 n 2 n ! | B 2 n | x 2 n 1 = n = 1 2 2 n 2 n ! | B 2 n | x 2 n , B ( x ) = 2 sin x x cos x + 1 sin x = 2 x cot x x sin x = 2 x 1 x n = 1 2 2 n 2 n ! | B 2 n | x 2 n 1 x 1 x + n = 1 2 2 n 2 2 n ! | B 2 n | x 2 n 1 = n = 1 2 2 n 2 n ! | B 2 n | x 2 n n = 1 2 2 n 2 2 n ! | B 2 n | x 2 n = n = 1 2 2 n ! | B 2 n | x 2 n .
Since
2 2 n 2 n ! | B 2 n | 2 2 n ! | B 2 n | = 2 2 n 2 n ! 2 2 n ! = 2 2 n 1
is increasing for n 1 , by Lemma 4 we have that a ( x ) / b ( x ) is increasing on 0 , π / 2 . By Lemma 3 we get that the function Q ( x ) = a ( x ) / b ( x ) = a ( x ) a ( 0 + ) / b ( x ) b ( 0 + ) is increasing on 0 , π / 2 . At the same time, we find that
lim x 0 + Q ( x ) = 4 , lim x π / 2 Q ( x ) = ln 2 π ln 2 3 / 2 π = 4.300 4 .
This completes the proof of Lemma 5.  □
Lemma 6
([59,60]). Let { a k } k = 0 be a nonnegative real sequence with a m > 0 and k = m + 1 a k > 0 , and
S ( t ) = k = 0 m a k t k + k = m + 1 a k t k
be a convergent power series on the interval ( 0 , r ) ( r > 0 ) . Then the following statements are true:
( 1 ) If S ( r ) 0 , then S ( t ) < 0 for all t ( 0 , r ) ;
( 2 ) If S ( r ) > 0 , then there exists t 0 ( 0 , r ) such that S ( t ) < 0 for t ( 0 , t 0 ) and S ( t ) > 0 for t ( t 0 , r ) .

3. Proofs of Main Results

3.1. Proof of Theorem 1

The desired conclusion is equivalent to
2 + cos x 3 sin x x > 1 180 x 4 sin x x 2 / 7
2 + cos x 3 sin x x 7 > 1 180 x 4 sin x x 2 / 7 7 = x 26 sin 2 x 6122 200 320 000 000 7 ln 2 + cos x 3 sin x x > ln x 26 sin 2 x 6122 200 320 000 000 .
Let
F ( x ) = 7 ln 2 + cos x 3 sin x x ln x 26 sin 2 x 6122 200 320 000 000 ,
where 0 < x < π / 2 . Then
F ( x ) = sin x 3 x 2 2 + cos x 3 sin x x f ( x ) ,
where
f ( x ) = 99 7 x 2 sin 2 x 2 x 2 cos 2 x 41 x cos x sin x 4 x 2 cos x 52 x sin x sin 2 x = 99 5 x 2 2 x 2 1 sin 2 x 41 x cos x sin x 4 x 2 cos x sin 2 x 52 x sin x .
By substituting the power series expansions of all functions involved in Lemma 1 into f ( x ) , we obtain that
f ( x ) = n = 4 4 n 13 2 2 n 16 n 112 2 n ! | B 2 n | x 2 n > 0
due to 4 n 13 2 2 n 16 n 112 > 0 for n 4 , which can be proved by mathematical induction. So F ( x ) > 0 for all x ( 0 , π / 2 ) . Then F ( x ) increases on ( 0 , π / 2 ) . Therefore, F ( x ) > F ( 0 + ) = 0 . At the same time, we find that
lim x 0 + 2 + cos x 3 sin x x x 4 sin x x 2 / 7 = 1 180 .
Then the proof of Theorem 1 is complete.

3.2. Proof of Theorem 2

The desired conclusion is equivalent to
2 + cos x 3 sin x x > 2 3 2 π sin x x cos x π 2 12 3 π 2 π 3 , 0 < x < π 2 .
Let
G ( x ) = ln 2 + cos x 3 sin x x ln 2 3 2 π π 2 12 3 π 2 π 3 ln sin x x cos x , 0 < x < π 2 .
Then
G ( 0 + ) = , G π 2 = 0 ,
and
G ( x ) = sin 2 x g ( x ) π 2 x 2 x 3 sin x + x cos x sin x x cos x π 3 ,
where
sin 2 x g ( x ) = 2 12 π 2 x 3 sin x + x sin x cos x 2 π 2 π 3 + 12 x 2 18 π 2 + 6 π 3 + 9 π 2 3 π 3 x 2 + sin 2 x 4 π 3 9 π 2 36 x 2 + 9 π 2 3 π 3 .
The proof of G ( x ) < 0 on 0 , π / 2 is complete when proving g ( x ) > 0 on 0 , π / 2 . In fact, by Lemma 1 we have
g ( x ) = 2 12 π 2 x 3 1 sin x + x cot x 2 π 2 π 3 + 12 x 2 18 π 2 + 6 π 3 + 9 π 2 3 π 3 x 2 sin 2 x + 4 π 3 9 π 2 36 x 2 + 9 π 2 3 π 3 = 2 12 π 2 x 3 1 x + n = 1 2 2 n 2 2 n ! | B 2 n | x 2 n 1 + x 1 x n = 1 2 2 n 2 n ! | B 2 n | x 2 n 1 2 π 2 π 3 + 12 x 2 18 π 2 + 6 π 3 + 9 π 2 3 π 3 x 2 1 x 2 + n = 1 2 2 n ( 2 n 1 ) 2 n ! | B 2 n | x 2 n 2 + 4 π 3 9 π 2 36 x 2 + 9 π 2 3 π 3
= 2 x 2 12 π 2 + 2 x 3 12 π 2 n = 1 2 2 n 2 2 n ! | B 2 n | x 2 n 1 + 6 π 3 18 π 2 + 2 π 2 π 3 + 12 x 2 1 n = 1 2 2 n 2 n ! | B 2 n | x 2 n 3 π 2 π 3 1 + n = 1 2 2 n ( 2 n 1 ) 2 n ! | B 2 n | x 2 n + 4 π 3 9 π 2 36 x 2 + 9 π 2 3 π 3 = 2 x 2 12 π 2 + 2 12 π 2 n = 1 2 2 n 2 2 n ! | B 2 n | x 2 n + 2 + 6 π 3 18 π 2 + 2 π 2 π 3 + 12 x 2 6 π 3 18 π 2 + 2 π 2 π 3 + 12 x 2 n = 1 2 2 n 2 n ! | B 2 n | x 2 n 3 π 2 π 3 1 + n = 1 2 2 n ( 2 n 1 ) 2 n ! | B 2 n | x 2 n + 4 π 3 9 π 2 36 x 2 + 9 π 2 3 π 3
= 2 x 2 12 π 2 + 2 12 π 2 n = 1 2 2 n 2 2 n ! | B 2 n | x 2 n + 2 + 6 π 3 18 π 2 + 2 π 2 π 3 + 12 x 2 6 π 3 18 π 2 n = 1 2 2 n 2 n ! | B 2 n | x 2 n 2 π 2 π 3 + 12 n = 1 2 2 n 2 n ! | B 2 n | x 2 n + 2 3 π 2 π 3 3 π 2 π 3 n = 1 2 2 n ( 2 n 1 ) 2 n ! | B 2 n | x 2 n + 4 π 3 9 π 2 36 x 2 + 9 π 2 3 π 3
= 2 12 π 2 n = 2 2 2 n 2 2 n ! | B 2 n | x 2 n + 2 6 π 3 18 π 2 n = 3 2 2 n 2 n ! | B 2 n | x 2 n 2 π 2 π 3 + 12 n = 2 2 2 n 2 n ! | B 2 n | x 2 n + 2 3 π 2 π 3 n = 3 2 2 n ( 2 n 1 ) 2 n ! | B 2 n | x 2 n = 2 12 π 2 n = 2 2 2 n 2 2 n ! | B 2 n | x 2 n + 2 2 π 2 π 3 + 12 n = 2 2 2 n 2 n ! | B 2 n | x 2 n + 2 3 π 2 π 3 n = 3 2 2 n ( 2 n 1 ) 2 n ! | B 2 n | x 2 n 6 π 3 18 π 2 n = 3 2 2 n 2 n ! | B 2 n | x 2 n
= 2 12 π 2 n = 3 2 2 n 2 2 2 n 2 ! | B 2 n 2 | x 2 n 2 π 2 π 3 + 12 n = 3 2 2 n 2 2 n 2 ! | B 2 n 2 | x 2 n 3 π 2 π 3 n = 3 2 2 n ( 2 n 1 ) 2 n ! | B 2 n | x 2 n 6 π 3 18 π 2 n = 3 2 2 n 2 n ! | B 2 n | x 2 n = : n = 3 a n x 2 n ,
where
a n = 2 12 π 2 2 2 n 2 2 2 n 2 ! | B 2 n 2 | 2 π 2 π 3 + 12 2 2 n 2 2 n 2 ! | B 2 n 2 | 3 π 2 π 3 2 2 n ( 2 n 1 ) 2 n ! | B 2 n | 6 π 3 18 π 2 2 2 n 2 n ! | B 2 n | = π 3 + 12 4 π 2 2 2 n + 16 π 2 192 4 2 n 2 ! | B 2 n 2 | 3 π 3 π 2 2 n + 1 2 2 n 2 n ! | B 2 n | .
We can compute to get
a 3 = 1 20 π 2 1 45 π 3 + 1 5 4.451 8 × 10 3 > 0 ,
and prove a n < 0 for n 4 . The latter is equivalent to
| B 2 n | | B 2 n 2 | > π 3 + 12 4 π 2 2 2 n + 16 π 2 192 ( 2 n ) ( 2 n 1 ) 12 π 3 π 2 2 2 n 2 n + 1 .
By Lemma 2, we have
| B 2 n | | B 2 n 2 | > 2 2 n 3 1 2 2 n 1 1 ( 2 n ) ( 2 n 1 ) π 2 ,
so the proof of (19) is complete when proving that for n 4 ,
2 2 n 3 1 2 2 n 1 1 ( 2 n ) ( 2 n 1 ) π 2 > π 3 + 12 4 π 2 2 2 n + 16 π 2 192 ( 2 n ) ( 2 n 1 ) 12 π 3 π 2 2 2 n 2 n + 1 ,
that is,
2 2 n 3 1 2 2 n 1 1 > π 3 + 12 4 π 2 2 2 n + 16 π 2 192 12 π 3 2 n + 1 2 2 n ,
or
2 2 n 3 1 12 π 3 2 n + 1 2 2 n 2 2 n 1 1 π 3 + 12 4 π 2 2 2 n + 16 π 2 192 = 1 2 h ( n ) > 0 ,
where
h ( n ) = 2 4 n 2 2 n 2 24 n π 3 + 12 π + 12 π 2 π 3 144 6 n π 3 + 3 π + 4 π 2 π 3 21 2 192 16 π 2 6 n π 3 + 3 π + 4 π 2 π 3 21
with
h ( 4 ) = 32 53 568 π 8001 π 2 + 2032 π 3 + 183 564 27 π 4 π 2 + π 3 + 93 74463 > 0 , h ( 5 ) = 32 1072 896 π 130 305 π 2 + 32 704 π 3 + 3605 004 33 π 4 π 2 + π 3 + 111 1.051 9 × 10 6 > 0 , h ( 6 ) = 32 20 407 296 π 2094 081 π 2 + 524 032 π 3 + 67 485 708 39 π 4 π 2 + π 3 + 129 1.677 1 × 10 7 > 0 .
Since
2 2 n 2 24 n π 3 + 12 π + 12 π 2 π 3 144 6 n π 3 + 3 π + 4 π 2 π 3 21 > 2 192 16 π 2 6 n π 3 + 3 π + 4 π 2 π 3 21 ,
we complete the proof of h ( n ) > 0 when proving
2 2 n > 4 24 n π 3 + 12 π + 12 π 2 π 3 144 6 n π 3 + 3 π + 4 π 2 π 3 21
for n 6 . We proved (21) by mathematical induction. When n = 6 , this inequality (21) is obviously true. Now let us say that (21) is true for n = m , so
2 2 m > 4 24 m π 3 + 12 π + 12 π 2 π 3 144 6 m π 3 + 3 π + 4 π 2 π 3 21 .
Since
2 2 m + 2 = 4 · 2 2 m > 16 24 m π 3 + 12 π + 12 π 2 π 3 144 6 m π 3 + 3 π + 4 π 2 π 3 21 ,
we just proved that (21) is true for n = m + 1 when proving
16 24 m π 3 + 12 π + 12 π 2 π 3 144 6 m π 3 + 3 π + 4 π 2 π 3 21 > 4 24 m + 1 π 3 + 12 π + 12 π 2 π 3 144 6 m + 1 π 3 + 3 π + 4 π 2 π 3 21 ,
or
A B : = 4 24 m π 3 + 12 π + 12 π 2 π 3 144 6 m π 3 + 3 π + 4 π 2 π 3 21 > 24 m + 1 π 3 + 12 π + 12 π 2 π 3 144 6 m + 1 π 3 + 3 π + 4 π 2 π 3 21 : = C D ,
which is equivalent to
A D B C = 939 π 3 2736 π 2 5652 π + 99 π 4 48 π 5 + 3 π 6 + 17 , 928 7992 π + 648 π 2 774 π 3 + 90 π 4 16 , 200 m + 432 π 2 2592 π + 3888 m 2 = 8928 π 2 146 , 916 π + 5583 π 3 441 π 4 48 π 5 + 3 π 6 + 255 , 096 + 4536 π 2 39 , 096 π + 774 π 3 90 π 4 + 62 , 856 m 6 + 432 π 2 2592 π + 3888 m 6 2 > 0
for m 6 . So those coefficients in the power series of g ( x ) satisfy the conditions of Lemma 6, and g ( π / 2 ) = 0 . From Lemma 6, it follows that g ( x ) < 0 on 0 , π / 2 . Therefore, g ( x ) > 0 on 0 , π / 2 . So G ( x ) < 0 for all x ( 0 , π / 2 ) . Then G ( x ) decreases on ( 0 , π / 2 ) . Then G ( x ) > G ( π / 2 ) = 0 for all x ( 0 , π / 2 ) . At the same time, we find that
lim x 0 + 2 + cos x 3 sin x x sin x x cos x π 2 12 / 3 π 2 π 3 = 2 3 2 π .
Then the proof of Theorem 2 is complete.

4. Remarks

In this section, we compare new conclusions (12) and (13) with (9)–(11).
Remark 1.
The inequality (12) is better than the one (9) because
1 180 x 4 sin x x 2 / 7 < 1 45 1 cos x 2
x 4 sin x x 2 / 7 > 4 1 cos x 2 = 2 1 cos x 2 x 2 sin x x 1 / 7 > 2 1 cos x = 2 sin x 2 2 sin x x 1 / 7 > sin x 2 x 2 2 sin x x > sin x 2 x 2 14 .
The last inequality follows from Lemma 5 due to
sin x 2 x 2 φ > sin x 2 x 2 14 sin x 2 x 2 < 1 ,
where
φ = ln 2 / π ln 2 3 / 2 / π = 4.300 4 .
Remark 2.
It is pointed out in [48] that
sin x x 2 + cos x 3 < 2 3 2 π sin x x cos x 2 < 2 3 2 π 1 π / 2 1 2 x sin x 2 .
Now we can obtain that the inequality (13) is better than the right-hand side ones of (10) and (11), that is,
sin x x 2 + cos x 3 < 2 3 2 π sin x x cos x π 2 12 / 3 π 2 π 3 < 2 3 2 π sin x x cos x 2
holds for all x ( 0 , π / 2 ) due to
2 3 2 π sin x x cos x π 2 12 / 3 π 2 π 3 < 2 3 2 π sin x x cos x 2
sin x x cos x π 2 12 / 3 π 2 π 3 > sin x x cos x 2 0 < sin x x cos x < 1 .
Remark 3.
We can find that the inequality (12) is better than the right-hand side one of (13) on 0 , 1.4117 while (13) is better than the one (12) on 1.4117 , π / 2 . So the inequality (12) has the advantage on the left-hand side of the interval ( 0 , π / 2 ) and the advantage of the inequality (13) lies near this point π / 2 .
Remark 4.
We also note that the following inequality conclusion appears in [29]:
sin x x < 2 + cos x / 2 n 3 k = 1 n cos x / 2 k , n = 0 , 1 ,
holds for all x ( 0 , π / 2 ) . From (23) we have that the inequality
sin x x 2 + cos x 3 < 2 + cos x / 2 n 3 k = 1 n cos x / 2 k 2 + cos x 3 , n = 0 , 1 ,
holds for all x ( 0 , π / 2 ) . In particular, letting n = 3 in the above inequality gives that for all x ( 0 , π / 2 ) ,
sin x x 2 + cos x 3 < 2 + cos x / 2 3 3 cos x / 2 3 cos x / 2 2 cos x / 2 2 + cos x 3 .
It is not hard to find that the inequality (25) is better than the one (13) on 0 , 1.5446 but the inequality (13) is stronger than the one (25) on 1.5446 , π / 2 . In other words, the advantage of (25) even (24) is on the left-hand side of the interval 0 , π / 2 while the advantage of (13) is near the right endpoint π / 2 .

5. Conclusions

In this paper, using the power series expansions of the functions cot x , 1 / sin x , and 1 / sin 2 x , and the estimate of the ratio of two adjacent even-indexed Bernoulli numbers, we obtained some new Cusa–Huygens type inequalities, which greatly improve known results.

Funding

This paper will be supported by the natural science foundation of China (61772025).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The author is thankful to reviewers for reviewers’ careful corrections to and valuable comments on the original version of this paper. This paper is supported by the Natural Science Foundation of China (No. 61772025).

Conflicts of Interest

The author declares that he has no conflict of interest..

References

  1. Campan, F.T. The Story of Number π; Editura Albatros: Bucuresti, Romania, 1977. [Google Scholar]
  2. Iuskevici, A.P. History of mathematics in 16th and 16th centuries, Moskva. 1961. [Google Scholar]
  3. Cajori, F. A History of Mathematics; MacMillan and Co.: New York, NY, USA; London, UK, 1894. [Google Scholar]
  4. Huygens, C. Oeuvres Completes, Publiees par la Societe Hollandaise des Science; M. Nijhoff: Haga, Sweden, 1988; Volume 20, Available online: https://books.google.co.jp/books?hl=zh-CN&lr=&id=_ITOdIOjB9QC&oi=fnd&pg=PR1&dq=4.+Huygens,+C.+Oeuvres+Completes,+Publiees+par+la+Societe+Hollandaise+des+Science%3B+Haga,+1888%E2%80%931940%3B+Volume+20.&ots=DCmWrqXUgZ&sig=ykCrdomKWoDaRNP0FbQMCvXYgCg&redir_esc=y#v=onepage&q&f=false (accessed on 17 July 2021).
  5. Queries-Replies. Math. Comput. 1949, 3, 561–563. [CrossRef] [Green Version]
  6. Vahlen, K.T. Konstruktionen und Approximationen in Systematischer Darstellung; BG Teubner: Leipzig, Germany, 1911; pp. 188–190. Available online: https://archive.org/details/konstruktionenun00vahluoft/ (accessed on 17 July 2021).
  7. Mitrinović, D.S. Analytic Inequalities; Springer: Berlin/Heidelberg, Germany, 1970. [Google Scholar]
  8. Sándor, J.; Bencze, M. On Huygens’ trigonometric inequality. RGMIA Res. Rep. Collect 2005, 8, 1–4. Available online: https://rgmia.org/papers/v8n3/Huygens.pdf (accessed on 17 July 2021).
  9. Zhu, L. On Frame’s Inequalities. J. Inequal. Appl. 2018, 94, 1–14. [Google Scholar] [CrossRef] [Green Version]
  10. Chen, C.-P.; Cheung, W.-S. Sharp Cusa and Becker-Stark inequalities. J. Inequal. Appl. 2011, 2011, 1–6. [Google Scholar] [CrossRef] [Green Version]
  11. Bagul, Y.J. Remark on the paper of Zheng Jie Sun and Ling Zhu. J. Math. Inequal. 2019, 13, 801–803. [Google Scholar] [CrossRef] [Green Version]
  12. Zhu, L. New Cusa–Huygens type inequalities. AIMS Math. 2020, 5, 4874–4888. [Google Scholar] [CrossRef]
  13. Zhu, L. A source of inequalities for circular functions. Comput. Math. Appl. 2009, 58, 1998–2004. [Google Scholar] [CrossRef] [Green Version]
  14. Mortici, C. The natural approach of Wilker-Cusa–Huygens inequalities. Math. Inequal. Appl. 2011, 14, 535–541. [Google Scholar] [CrossRef] [Green Version]
  15. Chen, X.-D.; Shi, J.; Wang, Y.; Xiang, P. A New Method for Sharpening the Bounds of Several Special Functions. Results Math. 2017, 72, 695–702. [Google Scholar] [CrossRef]
  16. Chen, X.-D.; Ma, J.; Jin, J.; Wang, Y. A two-point-Pade-approximant-based method for bounding some trigonometric functions. J. Inequal. Appl. 2018, 140, 1–15. [Google Scholar] [CrossRef] [Green Version]
  17. Chen, X.-D.; Ma, J.; Li, Y. Approximating trigonometric functions by using exponential inequalities. J. Inequal. Appl. 2019, 53, 1–14. [Google Scholar] [CrossRef] [Green Version]
  18. Banjac, B. System for Automaftic Proving of Some Classes of Analytic Inequalities. Ph.D. Thesis, School of Electrical Engineering, Belgrade, Serbia, May 2019. Available online: http://nardus.mpn.gov.rs/ (accessed on 17 July 2021).
  19. Wang, M.-K.; Wang, Z.-K.; Chu, Y.-M. An optimal double inequality between geometric and identric means. Appl. Math. Lett. 2012, 25, 471–475. [Google Scholar] [CrossRef] [Green Version]
  20. Qiu, Y.-F.; Wang, M.-K.; Chu, Y.-M.; Wang, G.-D. Two sharp inequalities for Lehmer mean, identric mean and logarithmic mean. J. Math. Inequal. 2011, 5, 301–306. [Google Scholar] [CrossRef] [Green Version]
  21. Chu, Y.-M.; Long, B.-Y. Sharp inequalities between means. Math. Inequal. Appl. 2011, 14, 647–655. [Google Scholar] [CrossRef]
  22. Wang, M.-K.; Hong, M.-Y.; Xu, Y.-F.; Shen, Z.-H.; Chu, Y. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 2020, 14, 1–21. [Google Scholar] [CrossRef]
  23. Lv, Y.-P.; Wang, G.-D.; Chu, Y.-M. A note on Jordan type inequalities for hyperbolic functions. Appl. Math. Lett. 2012, 25, 505–508. [Google Scholar] [CrossRef] [Green Version]
  24. Yang, Z.-H.; Chu, Y.-M.; Song, Y.-Q.; Li, Y.-M. A sharp double inequality for trigonometric functions and its applications. Abstr. Appl. Anal. 2014, 2014, 592085. [Google Scholar] [CrossRef]
  25. Yang, Z.-H.; Chu, Y.-M.; Wang, M.-K. Monotonicity criterion for the quotient of power series with applications. J. Math. Anal. Appl. 2015, 428, 587–604. [Google Scholar] [CrossRef]
  26. Yang, Z.H.; Chu, Y.-M. Sharp Wilker-type inequalities with applications. J. Inequal. Appl. 2014, 2014, 166. [Google Scholar] [CrossRef] [Green Version]
  27. Chu, H.-H.; Yang, Z.-H.; Chu, Y.-M.; Zhang, W. Generalized Wilker-type inequalities with two parameters. J. Inequal. Appl. 2016, 2016, 187. [Google Scholar] [CrossRef] [Green Version]
  28. Sun, H.; Yang, Z.-H.; Chu, Y.-M. Necessary and sufficient conditions for the two parameter generalized Wilker-type inequalities. J. Inequal. Appl. 2016, 2016, 322. [Google Scholar] [CrossRef] [Green Version]
  29. Neuman, E.; Sandor, J. On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa–Huygens, Wilker, and Huygens inequalities. Math. Inequal. Appl. 2010, 13, 715–723. [Google Scholar] [CrossRef] [Green Version]
  30. Zhu, L. Some new inequalities of the Huygens type. Comput. Math. Appl. 2009, 58, 1180–1182. [Google Scholar] [CrossRef] [Green Version]
  31. Bercu, G. Padé approximant related to remarkable inequalities involving trigonometric functions. J. Inequal. Appl. 2016, 2016, 99. [Google Scholar] [CrossRef] [Green Version]
  32. Bercu, G. The natural approach of trigonometric inequalities-Padé approximant. J. Math. Inequal. 2017, 11, 181–191. [Google Scholar] [CrossRef] [Green Version]
  33. Bercu, G. Sharp bounds on the sinc function via the Fourier series method. J. Math. Inequal. 2019, 13, 495–504. [Google Scholar] [CrossRef] [Green Version]
  34. Wu, Y.T.; Bercu, G. New refinements of Becker-Stark and Cusa–Huygens inequalities via trigonometric polynomials method. RACSAM 2021, 115, 87. [Google Scholar] [CrossRef]
  35. Bagul, Y.J.; Chesneau, C.; Kostić, M. On the Cusa–Huygens inequality. RACSAM 2021, 115, 29. [Google Scholar] [CrossRef]
  36. Malešević, B. One method for proving inequalities by computer. J. Inequal. Appl. 2007, 2007, 78691. [Google Scholar] [CrossRef] [Green Version]
  37. Malešević, B.; Makragić, M. A Method for Proving Some Inequalities on Mixed Trigonometric Polynomial Functions. J. Math. Inequal. 2016, 10, 849–876. [Google Scholar] [CrossRef] [Green Version]
  38. Malešević, B.; Nenezic, M.; Zhu, L.; Banjac, B.; Petrovic, M. Some new estimates of precision of Cusa–Huygens and Huygens approximations. Appl. Anal. Discrete Math. 2021, 15, 243–259. [Google Scholar] [CrossRef]
  39. Malešević, B.; Lutovac, T.; Banjac, B. One method for proving some classes of exponential analytical inequalities. Filomat 2018, 32, 6921–6925. [Google Scholar] [CrossRef] [Green Version]
  40. Malešević, B.; Lutovac, T.; Raš ajski, M.; Mortici, C. Extensions of the natural approach to refinements and generalizations of some trigonometric inequalities. Adv. Differ. Equ. 2018, 2018, 90. [Google Scholar] [CrossRef] [PubMed]
  41. Lutovac, T.; Malešević, B.; Mortici, C. The natural algorithmic approach of mixed trigonometric-polynomial problems. J. Inequal. Appl. 2017, 2017, 116. [Google Scholar] [CrossRef] [Green Version]
  42. Lutovac, T.; Malešević, B.; Ra šajski, M. A new method for proving some inequalities related to several special functions. Results Math. 2018, 73, 100. [Google Scholar] [CrossRef] [Green Version]
  43. Rašajski, M.; Lutovac, T.; Maleš ević, B. About some exponential inequalities related to the sinc function. J. Inequal. Appl. 2018, 2018, 150. [Google Scholar] [CrossRef]
  44. Banjac, B.; Makragić, M.; Malešević, B. Some notes on a method for proving inequalities by computer. Results Math. 2016, 69, 161–176. [Google Scholar] [CrossRef] [Green Version]
  45. Malešević, B.; Rašajski, M.; Lutovac, T. Double-sided Taylor’s approximations and their applications in Theory of analytic inequalities. In Differential and Integral Inequalities; Rassias, T.M., Andrica, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 151, pp. 569–582. [Google Scholar] [CrossRef]
  46. Anderson, D.G.; Vuorinen, M.; Zhang, X.H. Topics in Special Functions III. In Analytic Number Theory, Approximation Theory and Special Functions; Milovanović, G.V., Rassias, M.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 297–345. [Google Scholar]
  47. Bercu, G. Fourier series method related to Wilker–Cusa–Huygens inequalities. Math. Inequal. Appl. 2019, 22, 1091–1098. [Google Scholar] [CrossRef] [Green Version]
  48. Bagul, Y.J.; Banjac, B.; Chesneau, C.; Kostic, M.; Malesević, B. New refinements of Cusa–Huygens inequality. Results Math. 2021, 76, 107. [Google Scholar] [CrossRef]
  49. Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Applied Mathematics Series 55; Ninth printing; National Bureau of Standards: Washington, DC, USA, 1972. [Google Scholar]
  50. Jeffrey, A. Handbook of Mathematical Formulas and Integrals, 3rd ed.; Elsevier Academic Press: San Diego, CA, USA, 2004. [Google Scholar]
  51. Li, J.-L. An identity related to Jordan’s inequality. Int. J. Math. Math. Sci. 2006, 2006, 76782. [Google Scholar] [CrossRef]
  52. Zhu, L. New bounds for the ratio of two adjacent even-indexed Bernoulli numbers. RACSAM 2020, 114, 83. [Google Scholar] [CrossRef]
  53. Yang, Z.H.; Tian, J.F. Sharp bounds for the ratio of two zeta functions. J. Comput. Appl. Math. 2020, 364. [Google Scholar] [CrossRef]
  54. Qi, F. A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers. J. Comput. Appl. Math. 2019, 351, 1–5. [Google Scholar] [CrossRef]
  55. Anderson, G.D.; Vamanamurthy, M.K.; Vuorinen, M. Inequalities for quasiconformal mappings in space. Pac. J. Math. 1993, 160, 1–18. [Google Scholar] [CrossRef] [Green Version]
  56. Anderson, G.D.; Qiu, S.L.; Vamanamurthy, M.K.; Vuorinen, M. Generalized elliptic integrals and modular equations. Pac. J. Math. 2000, 192, 1–37. [Google Scholar] [CrossRef] [Green Version]
  57. Pinelis, I. L’Hospital type results for monotonicity, with applications. J. Inequal. Pure Appl. Math. 2002, 3, 5. [Google Scholar]
  58. Biernacki, M.; Krzyz, J. On the monotonicity of certain functionals in the theory of analytic functions. Ann. Univ. M. Curie–Sklodowska 1955, 2, 134–145. [Google Scholar]
  59. Yang, Z.-H.; Qian, W.-M.; Chu, Y.-M.; Zhang, W. On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind. J. Math. Anal. Appl. 2018, 462, 1714–1726. [Google Scholar] [CrossRef]
  60. Yang, Z.-H.; Tian, J.-F.; Zhu, Y.-R. A Rational Approximation for the Complete Elliptic Integral of the First Kind. Mathematics 2020, 8, 635. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Zhu, L. New Inequalities of Cusa–Huygens Type. Mathematics 2021, 9, 2101. https://doi.org/10.3390/math9172101

AMA Style

Zhu L. New Inequalities of Cusa–Huygens Type. Mathematics. 2021; 9(17):2101. https://doi.org/10.3390/math9172101

Chicago/Turabian Style

Zhu, Ling. 2021. "New Inequalities of Cusa–Huygens Type" Mathematics 9, no. 17: 2101. https://doi.org/10.3390/math9172101

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop