Analysis of the Tax Compliance in the EU: VECM and SEM
Abstract
:1. Introduction
2. Literature Review
2.1. Trust in the Tax Authorities
2.2. Power of the Tax Authorities
3. Materials and Methods
4. Results and Discussion on the VECM Analysis
4.1. Panel Unit Root (PUR) Tests
4.2. Cointegration Tests
4.3. Panel VECM Model
4.4. VEC Granger Causality/Block Exogeneity Wald Tests
4.5. Impulse Response Function
5. Results and Discussion of the SEM Analysis
5.1. Multivariate Regression with Default Covariance
5.2. Fully Saturated Multivariate Regression
5.3. Path Analysis
5.4. Model Fit Statistics
6. Discussion of the Results
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kirchler, E.; Hoelzl, E.; Wahl, I. Enforced versus voluntary tax compliance: The “slippery slope” framework. J. Econ. Psychol. 2008, 29, 210–225. [Google Scholar] [CrossRef]
- Qaiser Gillani, D.; Gillani, S.A.S.; Naeem, M.Z.; Spulbar, C.; Coker-Farrell, E.; Ejaz, A.; Birau, R. The Nexus between Sustainable Economic Development and Government Health Expenditure in Asian Countries Based on Ecological Footprint Consumption. Sustainability 2021, 13, 6824. [Google Scholar] [CrossRef]
- Budiman, I.; Inayati, I. Effect of Notice of Tax Warning, Notice of Tax Collection, and Tax Education Programs on Tax Compliance in West Sumatera and Jambi. Publik J. Ilmu Adm. 2021, 10, 45–63. [Google Scholar] [CrossRef]
- Prinz, A.; Muehlbacher, S.; Kirchler, E. The slippery slope framework on tax compliance: An attempt to formalization. J. Econ. Psychol. 2014, 40, 20–34. [Google Scholar] [CrossRef]
- Batrancea, L.; Nichita, A.; Olsen, J.; Kogler, C.; Kirchler, E.; Hoelzl, E.; Weiss, A.; Torgler, B.; Fooken, J.; Fuller, J.; et al. Trust and power as determinants of tax compliance across 44 nations. J. Econ. Psychol. 2019, 74, 102191. [Google Scholar] [CrossRef]
- Kastlunger, B.; Lozza, E.; Kirchler, E.; Schabmann, A. Powerful authorities and trusting citizens: The Slippery Slope Framework and tax compliance in Italy. J. Econ. Psychol. 2013, 34, 36–45. [Google Scholar] [CrossRef]
- Kogler, C.; Muehlbacher, S.; Kirchler, E. Testing the “slippery slope framework” among self-employed taxpayers. Econ. Gov. 2015, 16, 125–142. [Google Scholar] [CrossRef]
- Pukeliene, V.; Kažemekaityte, A. Tax behaviour: Assessment of tax compliance in european union countries. Ekonomika 2016, 95, 30–56. [Google Scholar] [CrossRef]
- Inasius, F.; Darijanto, G.; Gani, E.; Soepriyanto, G. Tax Compliance after the Implementation of Tax Amnesty in Indonesia. SAGE Open 2020, 1–10. [Google Scholar] [CrossRef]
- Mardhiah, M.; Miranti, R.; Tanton, R. The Slippery Slope Framework: Extending the Analysis by Investigating Factors Affecting Trust and Power; CESifo Working Paper, No. 7494; CESifo: Munich, Germany, 2019. [Google Scholar]
- Yasa, I.N.P.; Martadinata, I.P.H. Taxpayer Compliance from the Perspective of Slippery Slope Theory: An Experimental Study. J. Akunt. dan Keuang. 2018, 20, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Chong, K.-R.; Yusri, Y.; Selamat, A.I.; Ong, T.S. Tax climate manipulation on individual tax behavioural intentions. J. Appl. Account. Res. 2019, 20, 230–242. [Google Scholar] [CrossRef]
- Gangl, K.; van Dijk, W.W.; van Dijk, E.; Hofmann, E. Building versus maintaining a perceived confidence-based tax climate: Experimental evidence. J. Econ. Psychol. 2020, 81, 1–13. [Google Scholar] [CrossRef]
- Haning, M.T.; Hamzah, H.; Tahili, M. Determinants of Public Trust and Its Effect on Taxpayer Compliance Behavior in South Sulawesi Province, Indonesia. Viešoji Polit. Ir Adm. 2020, 19, 205–218. [Google Scholar] [CrossRef]
- Dayioğlu Erul, R. Socio-Economic Variables and Tax Compliance in the Scope of Fiscal Sociology: A Research on the European Union and OECD. J. Soc. Sci. 2020, 4, 1–17. [Google Scholar] [CrossRef]
- Tsikas, S.A. Enforce taxes, but cautiously: Societal implications of the slippery slope framework. Eur. J. Law Econ. 2020, 50, 149–170. [Google Scholar] [CrossRef]
- Nasution, M.K.; Santi, F.; Husaini, H.; Fadli, F.; Pirzada, K. Determinants of tax compliance: A study on individual taxpayers in Indonesia. Entrep. Sustain. Issues 2020, 8, 1401–1418. [Google Scholar] [CrossRef]
- D’Attoma, J. More bang for your buck: Tax compliance in the United States and Italy. J. Public Policy 2018, 40, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Kasper, M.; Kogler, C.; Kirchler, E. Tax policy and the news: An empirical analysis of taxpayers’ perceptions of tax-related media coverage and its impact on tax compliance. J. Behav. Exp. Econ. 2015, 54, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Lisi, G. Slippery slope framework, tax morale and tax compliance: A theoretical integration and an empirical assessment. Discuss. Pap. Econ. Behav. 2019, 2, 1–21. [Google Scholar]
- Mas’ud, A.; Manaf, N.A.A.; Saad, N. Trust and power as predictors to tax compliance: Global evidence. Econ. Sociol. 2019, 12, 192–204. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Ahmad, N. Trust and Tax Compliance Among Malaysian Working Youth. Int. J. Public Adm. 2014, 37, 389–396. [Google Scholar] [CrossRef]
- Abdu, M.; Jibir, A.; Muhammad, T. Analysis of Tax Compliance in Sub-Saharan Africa: Evidence from Firm-Level Study. Econ. Res. Finance 2020, 5, 119–142. [Google Scholar] [CrossRef]
- Williams, C. Evaluating Public Administration Approaches Towards Tax Non-Compliance in Europe. Adm. Sci. 2020, 10, 43. [Google Scholar] [CrossRef]
- Jimenez, P.; Iyer, G.S. Tax compliance in a social setting: The influence of social norms, trust in government, and perceived fairness on taxpayer compliance. Adv. Account. 2016, 34, 17–26. [Google Scholar] [CrossRef]
- Khasanah, U.; Sutrisno, T.; Mardiati, E. Coercive Authority and Trust in Tax Authority in Influencing Voluntary Tax Compliance: A Study of Slippery Slope. J. Account. Invest. 2019, 20, 75–93. [Google Scholar] [CrossRef]
- Baum, A.; Gupta, S.; Kimani, E.; Tapsoba, J.S. Corruption, Taxes and Compliance; WP/17/255; International Monetary Fund: Washington, DC, USA, 2017. [Google Scholar]
- Brezeanu, P.; Dumiter, F.; Ghiur, R.; Todor, S.P. Tax Compliance at National Level. Stud. Univ. “Vasile Goldis” Arad Econ. Ser. 2018, 28, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Brata, F.W.; Riandoko, R. Increasing Tax Compliance Through Trust and Power: Empirical Study of Slippery Slope Framework in ASEAN. Scientax 2020, 2, 27–38. [Google Scholar] [CrossRef]
- Mas’ud, A.; Manaf, N.A.A.; Saad, N. Do trust and power moderate each other in relation to tax compliance? Procedia Soc. Behav. Sci. 2014, 164, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Palil, M.R.; Hamid, M.A.; Hanafiah, M.H. Taxpayers Compliance Behaviour: Economic Factors Approach. J. Pengur. 2013, 38, 75–85. [Google Scholar]
- Dayioğlu Erul, R. Testing the Slippery Slope Framework in the Scope of Fiscal Sociology: A Study on the Classification of Income Levels. Fiscaoeconomia 2020, 4, 61–93. [Google Scholar] [CrossRef]
- Gangl, K.; Hofmann, E.; Hartl, B.; Berkics, M. The impact of powerful authorities and trustful taxpayers: Evidence for the extended slippery slope framework from Austria, Finland, and Hungary. Policy Stud. 2019, 41, 98–111. [Google Scholar] [CrossRef]
- Saeed, S.; Zubair, Z.A.; Khan, A. Voluntary Tax Compliance and the Slippery Slope Framework. J. Account. Financ. Emerg. Econ. 2020, 6, 571–582. [Google Scholar]
- Liu, X. Use Tax Compliance: The Role of Norms, Audit Probability, and Sanction Severity. Acad. Account. Financ. Stud. J. 2014, 18, 65–80. [Google Scholar]
- Ali, M.M.; Cecil, H.W.; Knoblett, J.A. The effects of tax rates and enforcement policies on taxpayer compliance: A study of self-employed taxpayers. Atl. Econ. J. 2001, 29, 186–202. [Google Scholar] [CrossRef]
- Ştefura, G. A New Perspective on Individual Tax Compliance: The Role of the Income Source, Audit Probability and the Chance of Being Detected. USV Ann. Econ. Public Adm. 2012, 12, 192–201. [Google Scholar]
- Engida, T.G.; Baisa, G.A. Factors Influencing taxpayers’ compliance with the tax system: An empirical study in Mekelle City, Ethiopia. eJournal Tax Res. 2014, 12, 433–452. [Google Scholar]
- Ntiamoah, J.A.; Sarpong, D.; Winful, E.C. Do economic variables still influence tax compliance intentions of self-employed persons in developing economies? Evidence from Ghana. J. Account. Tax. 2019, 11, 155–169. [Google Scholar] [CrossRef]
- Armenak, A.; Zareh, A. Nudging for Tax Compliance: A Meta-Analysis; ZEW-Centre for European Economic Research Discussion Paper 19–055; CESifo: Mannheim, Germany, 2019. [Google Scholar]
- Hoa, N.T.; Lien, V.T.P.; Tuan, T.T. Determinants Affecting Tax Compliance: A Case of Enterprises in Vietnam. Acad. Account. Financ. Stud. J. 2019, 23, 1–8. [Google Scholar]
- Inasius, F. Factors Influencing SME Tax Compliance: Evidence from Indonesia. Int. J. Public Adm. 2018, 42, 367–379. [Google Scholar] [CrossRef]
- Appah, E.; Wosowei, E.C. Tax Compliance Intentions and the Behaviour of the Individual Taxpayer: Evidence from Nigeria. Res. J. Financ. Account. 2016, 7, 1–9. [Google Scholar]
- Tilahun, M. Economic and Social Factors of Voluntary Tax Compliance: Evidence from Bahir Dar City. Int. J. Account. Res. 2019, 6, 182–188. [Google Scholar] [CrossRef]
- Nzioki, P.M.; Osebe, P. Rawlings Analysis of Factors Affecting Tax Compliance in Real Estate Sector: A Case of Real Estate Owners in Nakuru Town, Kenya. Res. J. Financ. Account. 2014, 5, 1–12. [Google Scholar]
- EViews. Available online: https://www.eviews.com/home.html (accessed on 12 May 2021).
- R software.The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 12 May 2021).
- Pedroni, P. Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxf. Bull. Econ. Stat. 1999, 61, 653–670. [Google Scholar] [CrossRef]
- Pedroni, P. Panel cointegration: Asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis. Econom. Theory 2004, 20, 597–625. [Google Scholar] [CrossRef] [Green Version]
- Kao, C. Spurious regression and residual-based tests for cointegration in panel data. J. Econ. 1999, 90, 1–44. [Google Scholar] [CrossRef]
- Engle, R.F.; Granger, C.W.J. Co-integration and Error Correction: Representation, Estimation, and Testing. Econometrica 1987, 55, 251–276. [Google Scholar] [CrossRef]
- Abdul, K.; Mursheda, M.; Mursheda, K.; Omar Faruque, F.; Omar Faruque, G.M.C. Socio-Economic Factors of Tax Compliance: An Empirical Study of Individual Taxpayers in the Dhaka Zones, Bangladesh; MPRA Paper No. 108278; Green University, Shanto-Mariam University of Creative Technology, ICMAB: Dhaka, Bangladesh, 2020. [Google Scholar]
Acronym | Explanation | Unit | Source |
---|---|---|---|
taxci | tax compliance (taxpayer’s behavior) | % of GDP | Eurostat |
trust | public trust in politicians | index | World Bank |
power | rule of law |
Acronym | Explanation | Unit | Source |
---|---|---|---|
taxcc | tax compliance (taxpayer’s behavior) | % of GDP | Eurostat |
waste | wastefulness of government spending | index | World Bank |
qedu | quality of the education system |
Variables | Levin, Lin, and Chu | ADF (ADF—Fisher Chi-Square; ADF—Choi Z-Stat) | PP (PP—Fisher Chi-Square; PP—Choi Z-Stat) |
---|---|---|---|
Level | |||
taxci | 0.843 | 27.015 2.454 | 29.603 3.062 |
trust | −0.469 | 38.280 1.411 | 45.917 1.370 |
power | −0.554 | 51.198 0.580 | 72.838 0.669 |
First difference | |||
Δ(taxci) | −15.407 *** | 252.135 *** −12.195 *** | 253.405 *** −12.248 *** |
Δ(trust) | −11.782 *** | 193.616 *** −9.457 *** | 198.067 *** −9.552 *** |
Δ(power) | −16.189 *** | 287.297 *** −12.645 *** | 297.431 *** −12.966 *** |
Pedroni Residual Cointegration Test | Kao Residual Cointegration Test | |||||||
---|---|---|---|---|---|---|---|---|
Cross-Sections Included: 25 (3 Dropped) | ||||||||
Trend assumption: no deterministic trend | Trend assumption: deterministic intercept and trend | Trend assumption: no deterministic intercept or trend | Trend assumption: no deterministic trend | |||||
Automatic lag length selection based on SIC with a max lag of 1 | Automatic lag length selection based on SIC with a max lag of 0 | Automatic lag length selection based on SIC with a max lag of 1 | Automatic lag length selection based on SIC with a max lag of 1 | |||||
Alternative hypothesis: common AR coefs. (within-dimension) | ||||||||
Statistic | Weighted Statistic | Statistic | Weighted Statistic | Statistic | Weighted Statistic | t-Statistic | ||
Panel v-Statistic | 0.968 | −1.458 | −1.872 | −3.440 | −1.316 | −2.955 | ADF | −2.825 ** |
Panel rho-Statistic | −0.573 | 1.415 | 2.177 | 3.529 | 0.459 | 1.189 | Residual variance | 0.267 |
Panel PP-Statistic | −9.506 *** | −4.365 *** | −8.893 *** | −5.757 *** | −2.690 ** | −1.352 | HAC variance | 0.189 |
Panel ADF-Statistic | −9.944 *** | −5.076 *** | −7.786 *** | −4.402 *** | −4.657 *** | −2.998 ** | ||
Alternative hypothesis: individual AR coefs. (between-dimension) | ||||||||
Statistic | ||||||||
Group rho-Statistic | 3.124 | 5.180 | 2.507 | |||||
Group PP-Statistic | −6.366 *** | −8.675 *** | −4.949 *** | |||||
Group ADF-Statistic | −7.101 *** | −4.775 *** | −7.502 *** |
Excluded | Chi-sq | df |
---|---|---|
Δ(trust) | 9.539 ** | 2 |
Δ(power) | 2.062 | 2 |
All | 13.710 ** | 4 |
Taxci | Taxcc | Qedu | Waste | Trust | Power | |
---|---|---|---|---|---|---|
taxci | 27.218 | 1.865 | 2.502 | 1.766 | 3.725 | 1.846 |
taxcc | 1.865 | 2.041 | 0.447 | 0.343 | 0.413 | 0.217 |
qedu | 2.502 | 0.447 | 0.726 | 0.544 | 0.738 | 0.428 |
waste | 1.766 | 0.343 | 0.544 | 1.619 | 0.566 | 0.386 |
trust | 3.725 | 0.413 | 0.738 | 0.566 | 2.404 | 0.606 |
power | 1.846 | 0.217 | 0.428 | 0.386 | 0.606 | 0.371 |
Estimator | ML | |||
---|---|---|---|---|
Optimization method | NLMINB | |||
Number of model parameters | 26 | |||
Number of observations | 308 | |||
Model test user model: | ||||
Test statistic | 11.136 | |||
Degrees of freedom | 1 | |||
p-value (Chi-square) | 0.001 | |||
Parameter estimates: | ||||
Standard errors | Standard | |||
Information | Expected | |||
Information saturated (h1) model | Structured | |||
Regressions: | ||||
Estimate | Std.Err | z-value | P(>|z|) | |
taxci ~ | ||||
trust | 0.441 | 0.198 | 2.226 | 0.026 |
power | 2.728 | 0.752 | 3.626 | 0.000 |
qedu | 1.409 | 0.517 | 2.725 | 0.006 |
waste | −0.244 | 0.214 | −1.141 | 0.254 |
taxcc | 0.267 | 0.175 | 1.529 | 0.126 |
Covariances: | ||||
Estimate | Std.Err | z-value | P(>|z|) | |
trust ~~ | ||||
power | 0.585 | 0.062 | 9.441 | 0.000 |
qedu | 0.702 | 0.082 | 8.525 | 0.000 |
waste | 0.513 | 0.114 | 4.502 | 0.000 |
taxcc | 0.303 | 0.122 | 2.490 | 0.013 |
power ~~ | ||||
qedu | 0.406 | 0.036 | 11.252 | 0.000 |
waste | 0.362 | 0.048 | 7.613 | 0.000 |
taxcc | 0.139 | 0.044 | 3.197 | 0.001 |
qedu ~~ | ||||
waste | 0.484 | 0.064 | 7.592 | 0.000 |
taxcc | 0.343 | 0.063 | 5.447 | 0.000 |
Intercepts: | ||||
Estimate | Std.Err | z-value | P(>|z|) | |
taxci | −3.476 | 1.562 | −2.225 | 0.026 |
trust | 3.017 | 0.088 | 34.441 | 0.000 |
power | 1.140 | 0.034 | 33.361 | 0.000 |
qedu | 4.273 | 0.047 | 90.347 | 0.000 |
waste | 3.066 | 0.072 | 42.354 | 0.000 |
taxcc | 2.433 | 0.081 | 29.940 | 0.000 |
Variances: | ||||
Estimate | Std.Err | z-value | P(>|z|) | |
taxci | 16.890 | 1.361 | 12.410 | 0.000 |
trust | 2.364 | 0.190 | 12.426 | 0.000 |
power | 0.360 | 0.029 | 12.485 | 0.000 |
qedu | 0.689 | 0.055 | 12.636 | 0.000 |
waste | 1.614 | 0.130 | 12.410 | 0.000 |
taxcc | 2.034 | 0.164 | 12.410 | 0.000 |
Estimator | ML | |||
---|---|---|---|---|
Optimization method | NLMINB | |||
Number of model parameters | 8 | |||
Number of observations | 308 | |||
Model test user model: | ||||
Test statistic | 6.395 | |||
Degrees of freedom | 1 | |||
p-value (Chi-square) | 0.011 | |||
Parameter estimates: | ||||
Standard errors | Standard | |||
Information | Expected | |||
Information saturated (h1) model | Structured | |||
Regressions: | ||||
Estimate | Std.Err | z-value | P(>|z|) | |
taxci ~ | ||||
waste | 0.506 | 0.211 | 2.403 | 0.016 |
trust | 1.430 | 0.175 | 8.160 | 0.000 |
taxcc ~ | ||||
trust | 0.172 | 0.052 | 3.332 | 0.001 |
Covariances: | ||||
Estimate | Std.Err | z-value | P(>|z|) | |
taxci ~~ | ||||
taxcc | 1.097 | 0.370 | 2.966 | 0.003 |
Intercepts | ||||
Estimate | Std.Err | z-value | P(>|z|) | |
taxci | 1.021 | 0.756 | 1.350 | 0.177 |
taxcc | 1.915 | 0.175 | 10.946 | 0.000 |
Variances: | ||||
Estimate | Std.Err | z-value | P(>|z|) | |
taxci | 20.858 | 1.681 | 12.410 | 0.000 |
taxcc | 1.963 | 0.158 | 12.410 | 0.000 |
Estimator | ML | |||
---|---|---|---|---|
Optimization method | NLMINB | |||
Number of model parameters | 8 | |||
Number of observations | 308 | |||
Model test user model: | ||||
Test statistic | 28.206 | |||
Degrees of freedom | 1 | |||
p-value (Chi-square) | 0.000 | |||
Parameter estimates: | ||||
Standard errors | Standard | |||
Information | Expected | |||
Information saturated (h1) model | Structured | |||
Regressions: | ||||
Estimate | Std.Err | z-value | P(>|z|) | |
taxci ~ | ||||
qedu | 1.382 | 0.491 | 2.815 | 0.005 |
power | 3.381 | 0.687 | 4.922 | 0.000 |
taxcc ~ | ||||
power | 0.584 | 0.129 | 4.510 | 0.000 |
Covariances: | ||||
Estimate | Std.Err | z-value | P(>|z|) | |
taxci ~~ | ||||
taxcc | 0.513 | 0.330 | 1.557 | 0.120 |
Intercepts: | ||||
Estimate | Std.Err | z-value | P(>|z|) | |
taxci | −2.870 | 1.538 | -1.866 | 0.062 |
taxcc | 1.768 | 0.167 | 10.576 | 0.000 |
Variances: | ||||
Estimate | Std.Err | z-value | P(>|z|) | |
taxci | 17.388 | 1.401 | 12.410 | 0.000 |
taxcc | 1.908 | 0.154 | 12.410 | 0.000 |
Estimator | ML | |||
---|---|---|---|---|
Optimization method | NLMINB | |||
Number of model parameters | 9 | |||
Number of observations | 308 | |||
Model test user model: | ||||
Test statistic | 0.000 | |||
Degrees of freedom | 0 | |||
Parameter estimates: | ||||
Standard errors | Standard | |||
Information | Expected | |||
Information saturated (h1) model | Structured | |||
Regressions: | ||||
Estimate | Std.Err | z-value | P(>|z|) | |
taxci ~ | ||||
waste | 0.599 | 0.214 | 2.800 | 0.005 |
trust | 1.408 | 0.175 | 8.029 | 0.000 |
taxcc ~ | ||||
waste | 0.165 | 0.065 | 2.542 | 0.011 |
trust | 0.133 | 0.053 | 2.496 | 0.013 |
Covariances: | ||||
Estimate | Std.Err | z-value | P(>|z|) | |
taxci ~~ | ||||
taxcc | 1.075 | 0.366 | 2.937 | 0.003 |
Intercepts: | ||||
Estimate | Std.Err | z-value | P(>|z|) | |
taxci | 0.803 | 0.760 | 1.056 | 0.291 |
taxcc | 1.526 | 0.231 | 6.606 | 0.000 |
Variances: | ||||
Estimate | Std.Err | z-value | P(>|z|) | |
taxci | 20.846 | 1.680 | 12.410 | 0.000 |
taxcc | 1.923 | 0.155 | 12.410 | 0.000 |
Estimator | ML | |||
---|---|---|---|---|
Optimization method | NLMINB | |||
Number of model parameters | 9 | |||
Number of observations | 308 | |||
Model test user model: | ||||
Test statistic | 0.000 | |||
Degrees of freedom | 0 | |||
Parameter estimates: | ||||
Standard errors | Standard | |||
Information | Expected | |||
Information saturated (h1) model | Structured | |||
Regressions: | ||||
Estimate | Std.Err | z-value | P(>|z|) | |
taxci ~ | ||||
qedu | 1.609 | 0.493 | 3.268 | 0.001 |
power | 3.119 | 0.689 | 4.529 | 0.000 |
taxcc ~ | ||||
qedu | 0.847 | 0.156 | 5.435 | 0.000 |
power | −0.392 | 0.218 | −1.800 | 0.072 |
Covariances: | ||||
Estimate | Std.Err | z-value | P(>|z|) | |
taxci ~~ | ||||
taxcc | 0.468 | 0.315 | 1.488 | 0.137 |
Intercepts: | ||||
Estimate | Std.Err | z-value | P(>|z|) | |
taxci | −3.544 | 1.543 | −2.297 | 0.022 |
taxcc | −0.740 | 0.488 | −1.516 | 0.130 |
Variances: | ||||
Estimate | Std.Err | z-value | P(>|z|) | |
taxci | 17.376 | 1.400 | 12.410 | 0.000 |
taxcc | 1.741 | 0.140 | 12.410 | 0.000 |
Estimator | ML | |||
---|---|---|---|---|
Optimization method | NLMINB | |||
Number of model parameters | 8 | |||
Number of observations | 308 | |||
Model test user model: | ||||
Test statistic | 4.260 | |||
Degrees of freedom | 1 | |||
p-value (Chi-square) | 0.039 | |||
Parameter estimates: | ||||
Standard errors | Standard | |||
Information | Expected | |||
Information saturated (h1) model | Structured | |||
Regressions: | ||||
Estimate | Std.Err | z-value | P(>|z|) | |
taxci ~ | ||||
waste | 0.599 | 0.214 | 2.800 | 0.005 |
trust | 1.408 | 0.175 | 8.029 | 0.000 |
taxcc ~ | ||||
trust | 0.083 | 0.057 | 1.461 | 0.144 |
taxci | 0.057 | 0.017 | 3.368 | 0.001 |
Intercepts: | ||||
Estimate | Std.Err | z-value | P(>|z|) | |
taxci | 0.803 | 0.760 | 1.056 | 0.291 |
taxcc | 1.788 | 0.176 | 10.170 | 0.000 |
Variances: | ||||
Estimate | Std.Err | z-value | P(>|z|) | |
taxci | 20.846 | 1.680 | 12.410 | 0.000 |
taxcc | 1.894 | 0.153 | 12.410 | 0.000 |
Estimator | ML | |||
---|---|---|---|---|
Optimization method | NLMINB | |||
Number of model parameters | 8 | |||
Number of observations | 308 | |||
Model test user model: | ||||
Test statistic | 24.859 | |||
Degrees of freedom | 1 | |||
p-value (Chi-square) | 0.000 | |||
Parameter estimates: | ||||
Standard errors | Standard | |||
Information | Expected | |||
Information saturated (h1) model | Structured | |||
Regressions: | ||||
Estimate | Std.Err | z-value | P(>|z|) | |
taxci ~ | ||||
qedu | 1.609 | 0.493 | 3.268 | 0.001 |
power | 3.119 | 0.689 | 4.529 | 0.000 |
taxcc ~ | ||||
power | 0.366 | 0.157 | 2.326 | 0.020 |
taxci | 0.044 | 0.018 | 2.374 | 0.018 |
Intercepts: | ||||
Estimate | Std.Err | z-value | P(>|z|) | |
taxci | −3.544 | 1.543 | −2.297 | 0.022 |
taxcc | 1.715 | 0.167 | 10.257 | 0.000 |
Variances: | ||||
Estimate | Std.Err | z-value | P(>|z|) | |
taxci | 17.376 | 1.400 | 12.410 | 0.000 |
taxcc | 1.874 | 0.151 | 12.410 | 0.000 |
Model Test User Model | |
---|---|
Test statistic | 4.260 |
Degrees of freedom | 1 |
p-value (Chi-square) | 0.039 |
Model test baseline model | |
Test statistic | 107.459 |
Degrees of freedom | 5 |
p-value | 0.000 |
Model Test User Model | |
---|---|
Test statistic | 24.859 |
Degrees of freedom | 1 |
p-value (Chi-square) | 0.000 |
Model test baseline model | |
Test statistic | 187.371 |
Degrees of freedom | 5 |
p-value | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surugiu, M.-R.; Mazilescu, C.-R.; Surugiu, C. Analysis of the Tax Compliance in the EU: VECM and SEM. Mathematics 2021, 9, 2170. https://doi.org/10.3390/math9172170
Surugiu M-R, Mazilescu C-R, Surugiu C. Analysis of the Tax Compliance in the EU: VECM and SEM. Mathematics. 2021; 9(17):2170. https://doi.org/10.3390/math9172170
Chicago/Turabian StyleSurugiu, Marius-Răzvan, Cristina-Raluca Mazilescu, and Camelia Surugiu. 2021. "Analysis of the Tax Compliance in the EU: VECM and SEM" Mathematics 9, no. 17: 2170. https://doi.org/10.3390/math9172170
APA StyleSurugiu, M.-R., Mazilescu, C.-R., & Surugiu, C. (2021). Analysis of the Tax Compliance in the EU: VECM and SEM. Mathematics, 9(17), 2170. https://doi.org/10.3390/math9172170