A Survey on Function Spaces of John–Nirenberg Type
Abstract
:1. Introduction
- (i)
- Via the characterization of distribution functions, we know that is closely related to the space whose definition (see (6) below) is similar to an equivalent expression of but with replaced by f (see Proposition 3 below);
- (ii)
2. BMO and
2.1. (Localized) BMO and
- (i)
- for almost every ;
- (ii)
- ;
- (iii)
- .
- (i)
- Φ is of lower type 1, namely for any and ,
- (ii)
- Φ is of critical lower type 1, namely there exists no , such that for any and ,
- (i)
- ;
- (ii)
- and there exist positive constants and , such that for any cube and any ,
- (iii)
- and there exists a , such that
- (i)
- ;
- (ii)
- and ;
- (iii)
- and .
- (i)
- ;
- (ii)
- and ;
- (iii)
- and .
2.2. John–Nirenberg Space
- (i)
- As a counterpart of Proposition 2, for any given and any given cube of , we have
- (ii)
- coincides with . To be precise, let be any given cube of , and
- (iii)
- Stampacchia [56] introduced the space , which coincides with in Definitions 3 if we write with and , and applied them to the context of interpolation of operators.
- Campanato [57] also used the John–Nirenberg spaces to study the interpolation of operators.
- Hurri-Syrjänen et al. [34] established a local-to-global result for the space on an open subset of . More precisely, it was proved that the norm is dominated by its local version modulus constants; here, ; for any open subset of , the related “norm” is defined in the same way as in (1) with replaced by ; and is defined in the same way as with an additional requirement for all chosen cubes Q in the definition of .
- Blasco and Espinoza-Villalva [33] computed the concrete value of for any given and any measurable set of positive and finite Lebesgue measure, where .
- The -type norm in Remark 2(iii) was further generalized and studied in Astashkin and Milman [63] via the Strömberg–Jawerth–Torchinsky local maximal operator.
3. John–Nirenberg–Campanato Space
- For any (the set of all non-negative integers), let denote the set of all polynomials of degree not greater than s on the cube Q, and denote the unique polynomial of degree not greater than s, such that
- Let and be a given cube of . For any measurable function f, let
- Let , , and be a given cube of . The space is defined by setting
- For any given and , and any measurable subset , let
3.1. John–Nirenberg–Campanato Spaces
- (i)
- The Campanato space is defined by setting
- (ii)
- The dual space of is defined to be the set of all continuous linear functionals on equipped with the weak-∗ topology.
- (i)
- The John–Nirenberg–Campanato space (for short, JNC space ) is defined by settingfor any i is as in (24) with Q replaced by , and the supremum is taken over all collections of interior pairwise disjoint cubes of . Furthermore, the “norm” of polynomials is zero, and for simplicity, the space is regarded as the quotient space .
- (ii)
- The dual space of is defined to be the set of all continuous linear functionals on equipped with the weak-∗ topology.
- (i)
- Let and be a given cube of . It is easy to show thatHowever, we claim thatIndeed, for the simplicity of the presentation, without loss of generality, we may show this claim only in . Let for any , and . Then, due to [46] (Example 3.1.3), and hence it suffices to prove that for any given . To do this, let for any . Then, by some simple calculations, we obtain
- (ii)
- The predual counterpart of Corollary 2 is still unclear so far (see Question 2 below for more details).
- (i)
- ;
- (ii)
- ;
- (iii)
- for any with .
- (i)
- If , then f induces a linear functional on and
- (ii)
- If , then there exists an , such that for any ,
- (i)
- Let . If and , or and , then
- (ii)
- Let . If and , or and , then
- (i)
- for any given and ,
- (ii)
- for any given , , , and ,
- (iii)
- for any given , , , and ,
- (i)
- for any given , , , and ,
- (ii)
- for any given , , , and ,
- (i)
- it is still unknown whether or not for any ,
- (ii)
- it is interesting to clarify the relation between and .
3.2. Localized John–Nirenberg–Campanato Spaces
- (i)
- ;
- (ii)
- if is a given cube of , then with equivalent norms;
- (iii)
- if .
- (i)
- If , then with equivalent norms.
- (ii)
- If , then with equivalent norms.
- (iii)
- If p, , , and , then almost everywhere.
- (i)
- ;
- (ii)
- ;
- (iii)
- when , for any and .
- (i)
- For any given , the linear functional
- (ii)
- Any bounded linear functional on can be represented by a function in the following sense:Moreover, there exists a positive constant C, depending only on s, such that .
- (i)
- If , and is a given cube of , then with equivalent norms.
- (ii)
- with equivalent norms.
- (i)
- It is interesting to clarify the relation between and , and to find the condition on g, such that .
- (ii)
- Let and . As , the relation between the localized atomic Hardy space (see [50] for the definition) and is still unknown.
3.3. Congruent John–Nirenberg–Campanato Spaces
- (i)
- (non-dyadic side length) if and only if and
- (ii)
- (i)
- For any given and ,Moreover, for any ,
- (ii)
- If , then, for any given and ,
- (iii)
- If and , then . Moreover, for any ,
- (iv)
- If and , then . Moreover, for any ,
- (i)
- Let be a given bounded interval of . Then,
- (ii)
- Let be a given cube of . Then,
- (i)
- Any induces a linear functional which is given by setting, for any and with in ,Moreover, for any ,
- (ii)
- Conversely, for any continuous linear functional on , there exists a unique , such that for any ,
4. Riesz-Type Space
4.1. Riesz–Morrey Spaces
- (i)
- Let and . Then,In particular, if , then , which is just the Morrey space defined in Remark 3.
- (ii)
- Let and . Then,
- (iii)
- Let , , and be a given cube of . Then,In particular, if .
- (iv)
- Let , , and be a given cube of . Then,
- (i)
- A function b is called a-block if
- (ii)
- The space of -chains, , is defined by setting
- (iii)
- The block-type space is defined by setting
- (iv)
- The finite block-type space is defined to be the set of all finite summations
- (i)
- If , then f induces a linear functional on with
- (ii)
- If , then there exists some , such that for any ,
4.2. Congruent Riesz–Morrey Spaces
- (i)
- If we do not require that has the same size in the definition of congruent Riesz–Morrey spaces, then it is just the Riesz–Morrey space in Section 4.1.
- (ii)
- If , , and , then in Definition 16 coincides with the Morrey space in Remark 3.
- (iii)
- Similar to Remark 7, for any given , and , if and only if and
- (iv)
5. Vanishing Subspace
5.1. Vanishing BMO Spaces
- , introduced by Sarason [6], is defined by setting
- , announced in Neri [97], is defined by setting
- , introduced by Tao et al. [99], is defined by setting
- (i)
- (ii)
- for any cube Q of ,
- (iii)
- (i)
- ;
- (ii)
- and enjoys the properties that
- a)
- b)
- for any cube Q of ,
- (iii)
- .
- (ii’)
- (i)
- The standard size and regularity conditions: for any multi-index with , there exists a positive constant , depending on , such that for any with or ,Here and thereafter, .
- (ii)
- The additional decay condition: there exist positive constants C and , such that for any with ,
- (i)
- ([2], Theorem 3) if and only if there exist functions , such that
- (ii)
- (iii)
- (i)
- Theorem 18 with replaced by ;
- (ii)
- Theorem 13 with and replaced, respectively, by and ;
- (iii)
- Question 13 with replaced by ;
- (iv)
- The dual result , in ([104], Theorem 9), with replaced by or , where is the localized Hardy space;
- (v)
- The equivalent characterizations for and via localized Riesz transforms.
5.2. Vanishing John–Nirenberg–Campanato Spaces
- (i)
- , where
- (ii)
- and, for any given ,
- (iii)
- and
- (i)
- (ii)
- (i)
- It is still unknown whether or not Theorems 21 and 22 hold true with replaced by when p, , , and .
- (ii)
- It is interesting to ask whether or not for any given , , , and ,
5.3. Vanishing Congruent John–Nirenberg–Campanato Spaces
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- John, F.; Nirenberg, L. On functions of bounded mean oscillation. Commun. Pure Appl. Math. 1961, 14, 415–426. [Google Scholar] [CrossRef]
- Fefferman, C.; Stein, E.M. Hp spaces of several variables. Acta Math. 1972, 129, 137–193. [Google Scholar] [CrossRef]
- Coifman, R.R.; Rochberg, R.; Weiss, G. Factorization theorems for Hardy spaces in several variables. Ann. Math. 1976, 103, 611–635. [Google Scholar] [CrossRef]
- Coifman, R.R.; Weiss, G. Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes. (French) Étude de Certaines Intégrales Singulières; Lecture Notes in Mathematics; Springer: Berlin, Germany; New York, NY, USA, 1971; Volume 242. [Google Scholar]
- Coifman, R.R.; Weiss, G. Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 1977, 83, 569–645. [Google Scholar] [CrossRef] [Green Version]
- Sarason, D. Functions of vanishing mean oscillation. Trans. Am. Math. Soc. 1975, 207, 391–405. [Google Scholar] [CrossRef]
- Uchiyama, A. On the compactness of operators of Hankel type. Tôhoku Math. J. 1978, 30, 163–171. [Google Scholar] [CrossRef]
- Nakai, E.; Yabuta, K. Pointwise multipliers for functions of bounded mean oscillation. J. Math. Soc. Jpn. 1995, 37, 207–218. [Google Scholar]
- Iwaniec, T. Lp-theory of quasiregular mappings mappings. In Quasiconformal Space Mappings; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1992; Volume 1508, pp. 39–64. [Google Scholar]
- Bényi, A.; Damián, W.; Moen, K.; Torres, R.H. Compact bilinear commutators: The weighted case. Mich. Math. J. 2015, 64, 39–51. [Google Scholar] [CrossRef]
- Bényi, A.; Torres, R.H. Compact bilinear operators and commutators. Proc. Am. Math. Soc. 2013, 141, 3609–3621. [Google Scholar] [CrossRef] [Green Version]
- Chang, D.-C.; Li, S.-Y. On the boundedness of multipliers, commutators and the second derivatives of Green’s operators on H1 and BMO. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 1999, 28, 341–356. [Google Scholar]
- Janson, S. Mean oscillation and commutators of singular integral operators. Ark. Mat. 1978, 16, 263–270. [Google Scholar] [CrossRef]
- Li, W.; Nakai, E.; Yang, D. Pointwise multipliers on BMO spaces with non-doubling measures. Taiwan. J. Math. 2018, 22, 183–203. [Google Scholar] [CrossRef]
- Nakai, E. Pointwise multipliers on several functions spaces—A survey. Linear Nonlinear Anal. 2017, 3, 27–59. [Google Scholar]
- Nakai, E. The Campanato, Morrey and Hölder spaces on spaces of homogeneous type. Stud. Math. 2006, 176, 1–19. [Google Scholar] [CrossRef]
- Nakai, E. Pointwise multipliers on weighted BMO spaces. Stud. Math. 1997, 125, 35–56. [Google Scholar] [CrossRef]
- Nakai, E. Pointwise multipliers for functions of weighted bounded mean oscillation. Stud. Math. 1993, 105, 105–119. [Google Scholar] [CrossRef] [Green Version]
- Nakai, E.; Yabuta, K. Pointwise multipliers for functions of weighted bounded mean oscillation on spaces of homogeneous type. Math. Japon. 1997, 46, 15–28. [Google Scholar]
- Chang, D.-C.; Dafni, G.; Stein, E.M. Hardy spaces, BMO, and boundary value problems for the Laplacian on a smooth domain in . Trans. Am. Math. Soc. 1999, 351, 1605–1661. [Google Scholar] [CrossRef]
- Nakai, E.; Yoneda, T. Bilinear estimates in dyadic BMO and the Navier–Stokes equations. J. Math. Soc. Jpn. 2012, 64, 399–422. [Google Scholar] [CrossRef]
- Tao, J.; Yang, D.; Yang, D. Beurling–Ahlfors commutators on weighted Morrey spaces and applications to Beltrami equations. Potential Anal. 2020, 53, 1467–1491. [Google Scholar] [CrossRef]
- Ambrosio, L.; Bourgain, J.; Brezis, H.; Figalli, A. BMO-type norms related to the perimeter of sets. Commun. Pure Appl. Math. 2016, 69, 1062–1086. [Google Scholar] [CrossRef] [Green Version]
- Butaev, A.; Dafni, G. Approximation and extension of functions of vanishing mean oscillation. J. Geom. Anal. 2021, 31, 6892–6921. [Google Scholar] [CrossRef]
- Chang, D.-C.; Dafni, G.; Sadosky, C. A div-curl lemma in BMO on a domain. In Harmonic Analysis, Signal Processing, and Complexity; Progress in Mathematics; Birkhäuser Boston: Boston, MA, USA, 2005; Volume 238. [Google Scholar]
- Dafni, G.; Gibara, R. BMO on shapes and sharp constants. In Advances in Harmonic Analysis and Partial Differential Equations; Contemporary Mathematics; American Mathematical Society: Providence, RI, USA, 2020; Volume 748, pp. 1–33. [Google Scholar]
- Dafni, G.; Gibara, R.; Lavigne, A. BMO and the John–Nirenberg inequality on measure spaces. Anal. Geom. Metr. Spaces 2020, 8, 335–362. [Google Scholar] [CrossRef]
- Dafni, G.; Gibara, R.; Yue, H. Geometric maximal operators and BMO on product bases. J. Geom. Anal. 2021, 31, 5740–5765. [Google Scholar] [CrossRef]
- Chang, D.-C.; Sadosky, C. Functions of bounded mean oscillation. Taiwan. J. Math. 2006, 10, 573–601. [Google Scholar] [CrossRef]
- Aalto, D.; Berkovits, L.; Kansanen, O.E.; Yue, H. John–Nirenberg lemmas for a doubling measure. Stud. Math. 2011, 204, 21–37. [Google Scholar] [CrossRef] [Green Version]
- Dafni, G.; Hytönen, T.; Korte, R.; Yue, H. The space JNp: Nontriviality and duality. J. Funct. Anal. 2018, 275, 577–603. [Google Scholar] [CrossRef] [Green Version]
- Berkovits, L.; Kinnunen, J.; Martell, J.M. Oscillation estimates, self-improving results and good-λ inequalities. J. Funct. Anal. 2016, 270, 3559–3590. [Google Scholar] [CrossRef] [Green Version]
- Blasco, O.; Espinoza-Villalva, C. The norm of the characteristic function of a set in the John–Nirenberg space of exponent p. Math. Methods Appl. Sci. 2020, 43, 9327–9336. [Google Scholar] [CrossRef]
- Hurri-Syrjänen, R.; Marola, N.; Vähäkangas, A.V. Aspects of local-to-global results. Bull. Lond. Math. Soc. 2014, 46, 1032–1042. [Google Scholar] [CrossRef] [Green Version]
- Milman, M. Marcinkiewicz spaces, Garsia–Rodemich spaces and the scale of John–Nirenberg self improving inequalities. Ann. Acad. Sci. Fenn. Math. 2016, 41, 491–501. [Google Scholar] [CrossRef]
- Sun, J.; Xie, G.; Yang, D. Localized John–Nirenberg–Campanato spaces. Anal. Math. Phys. 2021, 11, 29. [Google Scholar] [CrossRef]
- Tao, J.; Yang, D.; Yuan, W. A bridge connecting Lebesgue and Morrey spaces via Riesz norms. Banach J. Math. Anal. 2021, 15, 20. [Google Scholar] [CrossRef]
- Franchi, B.; Pérez, C.; Wheeden, R.L. Self-improving properties of John–Nirenberg and Poincaré inequalities on spaces of homogeneous type. J. Funct. Anal. 1998, 153, 108–146. [Google Scholar] [CrossRef] [Green Version]
- MacManus, P.; Pérez, C. Generalized Poincaré inequalities: Sharp self-improving properties. Internat. Math. Res. Notices 1998, 1998, 101–116. [Google Scholar] [CrossRef]
- Marola, N.; Saari, O. Local to global results for spaces of BMO type. Math. Z. 2016, 282, 473–484. [Google Scholar] [CrossRef]
- Riesz, F. Untersuchungen über systeme integrierbarer funktionen. Math. Ann. 1910, 69, 449–497. (In German) [Google Scholar] [CrossRef] [Green Version]
- Duoandikoetxea, J. Fourier Analysis; Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 2001; Volume 29. [Google Scholar]
- Stein, E.M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals; Princeton Mathematical Series, Monographs in Harmonic Analysis III; Princeton University Press: Princeton, NJ, USA, 1993; Volume 43. [Google Scholar]
- Bényi, A.; Martell, J.M.; Moen, K.; Stachura, E.; Torres, R.H. Boundedness results for commutators with BMO functions via weighted estimates: A comprehensive approach. Math. Ann. 2020, 376, 61–102. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.; Sharpley, R. Interpolation of Operators; Pure and Applied Mathematics; Academic Press Inc.: Boston, MA, USA, 1988; Volume 129. [Google Scholar]
- Grafakos, L. Morden Fourier Analysis, 3rd ed.; Graduate Texts in Mathematics; Springer: New York, NY, USA, 2014; Volume 250. [Google Scholar]
- Grafakos, L. Classical Fourier Analysis, 3rd ed.; Graduate Texts in Mathematics; Springer: New York, NY, USA, 2014; Volume 249. [Google Scholar]
- Izuki, M.; Noi, T.; Sawano, Y. The John–Nirenberg inequality in ball Banach function spaces and application to characterization of BMO. J. Inequal. Appl. 2019, 2019, 268. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Yang, D.; Yuan, W.; Zhang, Y. Compactness characterizations of commutators on ball Banach function spaces. Potential Anal. 2021, in press. [Google Scholar]
- Goldberg, D. A local version of real Hardy spaces. Duke Math. J. 1979, 46, 27–42. [Google Scholar] [CrossRef]
- Jonsson, A.; Sjögren, P.; Wallin, H. Hardy and Lipschitz spaces on subsets of . Stud. Math. 1984, 80, 141–166. [Google Scholar] [CrossRef] [Green Version]
- Chang, D.-C. The dual of Hardy spaces on a bounded domain in . Forum Math. 1994, 6, 65–81. [Google Scholar] [CrossRef]
- Dafni, G.; Liflyand, E. A local Hilbert transform, Hardy’s inequality and molecular characterization of Goldberg’s local Hardy space. Complex Anal. Synerg. 2019, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Dafni, G.; Yue, H. Some characterizations of local bmo and h1 on metric measure spaces. Anal. Math. Phys. 2012, 2, 285–318. [Google Scholar] [CrossRef]
- Garsia, A.M.; Rodemich, E. Monotonicity of certain functionals under rearrangement. Ann. Inst. Fourier (Grenoble) 1974, 24, 67–116. [Google Scholar] [CrossRef]
- Stampacchia, G. The spaces L(p,λ), N(p,λ) and interpolation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 1965, 19, 443–462. [Google Scholar]
- Campanato, S. Su un teorema di interpolazione di G. Stampacchia. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 1966, 20, 649–652. [Google Scholar]
- Myyryläinen, K. Median-type John–Nirenberg space in metric measure spaces. arXiv 2021, arXiv:2104.05380. [Google Scholar]
- Kinnunen, J.; Myyryläinen, K. Dyadic John–Nirenberg space. arXiv 2021, arXiv:2107.00492. [Google Scholar]
- Brudnyi, A.; Brudnyi, Y. On the Banach structure of multivariate BV spaces. Diss. Math. 2020, 548, 1–52. [Google Scholar] [CrossRef]
- Tao, J.; Yang, D.; Yuan, W. John–Nirenberg–Campanato spaces. Nonlinear Anal. 2019, 189, 111584. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, Ó.; Milman, M. Sparse Brudnyi and John–Nirenberg spaces. arXiv 2021, arXiv:2107.05117. [Google Scholar]
- Astashkin, S.; Milman, M. Garsia–Rodemich spaces: Local maximal functions and interpolation. Stud. Math. 2020, 255, 1–26. [Google Scholar] [CrossRef]
- Jia, H.; Tao, J.; Yuan, W.; Yang, D.; Zhang, Y. Special John–Nirenberg–Campanato spaces via congruent cubes. Sci. China Math. 2021. [Google Scholar] [CrossRef]
- Taibleson, M.H.; Weiss, G. The molecular characterization of certain Hardy spaces. In Representation Theorems for Hardy Spaces, Astérisque 77; Société Mathématique de France: France, Paris, 1980; pp. 67–149. [Google Scholar]
- Lu, S. Four Lectures on Real HP Spaces; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 1995. [Google Scholar]
- Campanato, S. Proprietà di una famiglia di spazi funzionali. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 1964, 18, 137–160. [Google Scholar]
- Morrey, C.B. On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 1938, 43, 126–166. [Google Scholar] [CrossRef]
- García-Cuerva, J.; Rubio de Francia, J. Weighted Norm Inequalities and Related Topics; North-Holland Mathematics Studies, Notas de Matemática [Mathematical Notes]; North-Holland Publishing Co.: Amsterdam, The Netherlands, 1985; Volume 116. [Google Scholar]
- Bourgain, J.; Brezis, H.; Mironescu, P. A new function space and applications. J. Eur. Math. Soc. (JEMS) 2015, 17, 2083–2101. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.; Tao, J.; Yuan, W.; Yang, D.; Zhang, Y. Boundedness of Calderón–Zygmund operators on special John–Nirenberg–Campanato and Hardy-type spaces via congruent cubes. Anal. Math. Phys. 2021. under review. [Google Scholar]
- Jia, H.; Tao, J.; Yuan, W.; Yang, D.; Zhang, Y. Boundedness of fractional integrals on special John–Nirenberg–Campanato and Hardy-type spaces via congruent cubes. Front. Math. China 2021. under review. [Google Scholar]
- Jia, H.; Yuan, W.; Yang, D.; Zhang, Y. Estimates for Littlewood–Paley operators on special John–Nirenberg–Campanato spaces via congruent cubes. arXiv 2021, arXiv:2108.01559. [Google Scholar]
- Fusco, N.; Moscariello, G.; Sbordone, C. BMO-type seminorms and Sobolev functions. ESAIM Control Optim. Calc. Var. 2018, 24, 835–847. [Google Scholar] [CrossRef] [Green Version]
- Di Fratta, G.; Fiorenza, A. BMO-type seminorms from Escher-type tessellations. J. Funct. Anal. 2020, 279, 108556. [Google Scholar] [CrossRef]
- Essén, M.; Janson, S.; Peng, L.; Xiao, J. Q spaces of several real variables. Indiana Univ. Math. J. 2000, 49, 575–615. [Google Scholar] [CrossRef] [Green Version]
- Koskela, P.; Xiao, J.; Zhang, Y.; Zhou, Y. A quasiconformal composition problem for the Q-spaces. J. Eur. Math. Soc. (JEMS) 2017, 19, 1159–1187. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J. Qα Analysis on Euclidean Spaces; Advances in Analysis and Geometry 1; De Gruyter: Berlin, Germany, 2019. [Google Scholar]
- Zhuo, C.; Sickel, W.; Yang, D.; Yuan, W. Characterizations of Besov-type and Triebel–Lizorkin-type spaces via averages on balls. Canad. Math. Bull. 2017, 60, 655–672. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Yang, Z.; Yuan, W. John–Nirenberg-Q spaces via congruent cubes. 2021; submitted. [Google Scholar]
- Hakim, D.I.; Nakamura, S.; Sawano, Y. Complex interpolation of smoothness Morrey subspaces. Constr. Approx. 2017, 46, 489–563. [Google Scholar] [CrossRef]
- Hakim, D.I.; Sawano, Y. Complex interpolation of various subspaces of Morrey spaces. Sci. China Math. 2020, 63, 937–964. [Google Scholar] [CrossRef]
- Mastyło, M.; Sawano, Y. Complex interpolation and Calderón–Mityagin couples of Morrey spaces. Anal. PDE 2019, 12, 1711–1740. [Google Scholar] [CrossRef]
- Mastyło, M.; Sawano, Y.; Tanaka, H. Morrey-type space and its Köthe dual space. Bull. Malays. Math. Sci. Soc. 2018, 41, 1181–1198. [Google Scholar] [CrossRef]
- Sawano, Y.; Di Fazio, G.; Hakim, D. Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s; Chapman and Hall/CRC: New York, NY, USA, 2020; Volume I, Available online: https://www.taylorfrancis.com/books/mono/10.1201/9780429085925/morrey-spaces-yoshihiro-sawano-giuseppe-di-fazio-denny-ivanal-hakim (accessed on 8 September 2021).
- Sawano, Y.; Di Fazio, G.; Hakim, D. Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s; Chapman and Hall/CRC: New York, NY, USA, 2020; Volume II, Available online: https://www.taylorfrancis.com/books/mono/10.1201/9781003029076/morrey-spaces-yoshihiro-sawano-giuseppe-di-fazio-denny-ivanal-hakim (accessed on 8 September 2021).
- Fofana, I.; Faléa, F.R.; Kpata, B.A. A class of subspaces of Morrey spaces and norm inequalities on Riesz potential operators. Afr. Mat. 2015, 26, 717–739. [Google Scholar] [CrossRef]
- Zeng, Z.; Chang, D.-C.; Tao, J.; Yang, D. Nontriviality of Riesz–Morrey spaces. Appl. Anal. 2021. [Google Scholar] [CrossRef]
- Blasco, O.; Ruiz, A.; Vega, L. Non-interpolation in Morrey–Campanato and block spaces. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 1999, 28, 31–40. [Google Scholar]
- Chiarenza, F.; Frasca, M. Morrey spaces and Hardy–Littlewood maximal function. Rend. Mat. Appl. 1987, 7, 273–279. [Google Scholar]
- Fofana, I. Étude d’une classe d’espace de fonctions contenant les espaces de Lorentz. Afr. Mat. 1988, 1, 29–50. [Google Scholar]
- Adama, A.; Feuto, J.; Fofana, I. A weighted inequality for potential type operators. Adv. Pure Appl. Math. 2019, 10, 413–426. [Google Scholar] [CrossRef] [Green Version]
- Coulibaly, S.; Fofana, I. On Lebesgue integrability of Fourier transforms in amalgam spaces. J. Fourier Anal. Appl. 2019, 25, 184–209. [Google Scholar] [CrossRef]
- Diarra, N.; Fofana, I. On preduals and Köthe duals of some subspaces of Morrey spaces. J. Math. Anal. Appl. 2021, 496, 124842. [Google Scholar] [CrossRef]
- Dosso, M.; Fofana, I.; Sanogo, M. On some subspaces of Morrey–Sobolev spaces and boundedness of Riesz integrals. Ann. Polon. Math. 2013, 108, 133–153. [Google Scholar] [CrossRef]
- Feuto, J.; Fofana, I.; Koua, K. Integrable fractional mean functions on spaces of homogeneous type. Afr. Diaspora J. Math. (N.S.) 2010, 9, 8–30. [Google Scholar]
- Neri, U. Fractional integration on the space H1 and its dual. Stud. Math. 1975, 53, 175–189. [Google Scholar] [CrossRef] [Green Version]
- Torres, R.H.; Xue, Q. On compactness of commutators of multiplication and bilinear pesudodifferential operators and a new subspace of BMO. Rev. Mat. Iberoam. 2020, 36, 939–956. [Google Scholar] [CrossRef]
- Tao, J.; Xue, Q.; Yang, D.; Yuan, W. XMO and weighted compact bilinear commutators. J. Fourier Anal. Appl. 2021, 27, 60. [Google Scholar] [CrossRef]
- Li, K. Multilinear commutators in the two-weight setting. arXiv 2020, arXiv:2006.09071. [Google Scholar]
- Tao, J.; Yang, D.; Yang, D. Boundedness and compactness characterizations of Cauchy integral commutators on Morrey spaces. Math. Methods Appl. Sci. 2019, 42, 1631–1651. [Google Scholar] [CrossRef] [Green Version]
- Torres, R.H.; Xue, Q.; Yan, J. Compact bilinear commutators: The quasi-Banach space case. J. Anal. 2018, 26, 227–234. [Google Scholar] [CrossRef]
- Chaffee, L.; Chen, P.; Han, Y.; Torres, R.H.; Ward, L.A. Characterization of compactness of commutators of bilinear singular integral operators. Proc. Am. Math. Soc. 2018, 146, 3943–3953. [Google Scholar] [CrossRef]
- Dafni, G. Local VMO and weak convergence in h1. Canad. Math. Bull. 2002, 45, 46–59. [Google Scholar] [CrossRef]
- Bourdaud, G. Remarques sur certains sous-espaces de BMO () et de bmo (). (French. English, French summary) [Remarks on some subspaces of BMO () and bmo ()]. Ann. Inst. Fourier (Grenoble) 2002, 52, 1187–1218. [Google Scholar] [CrossRef]
- Alabalik, A.; Almeida, A.; Samko, S. On the invariance of certain vanishing subspaces of Morrey spaces with respect to some classical operators. Banach J. Math. Anal. 2020, 14, 987–1000. [Google Scholar] [CrossRef] [Green Version]
- Alabalik, A.; Almeida, A.; Samko, S. Preservation of certain vanishing properties of generalized Morrey spaces by some classical operators. Math. Methods Appl. Sci. 2020, 43, 9375–9386. [Google Scholar] [CrossRef]
- Almeida, A. Maximal commutators and commutators of potential operators in new vanishing Morrey spaces. Nonlinear Anal. 2020, 192, 111684. [Google Scholar] [CrossRef]
- Almeida, A.; Samko, S. Approximation in Morrey spaces. J. Funct. Anal. 2017, 272, 2392–2411. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Yang, D.; Yuan, W. Vanishing John–Nirenberg spaces. Adv. Calc. Var. 2021. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, J.; Yang, D.; Yuan, W. A Survey on Function Spaces of John–Nirenberg Type. Mathematics 2021, 9, 2264. https://doi.org/10.3390/math9182264
Tao J, Yang D, Yuan W. A Survey on Function Spaces of John–Nirenberg Type. Mathematics. 2021; 9(18):2264. https://doi.org/10.3390/math9182264
Chicago/Turabian StyleTao, Jin, Dachun Yang, and Wen Yuan. 2021. "A Survey on Function Spaces of John–Nirenberg Type" Mathematics 9, no. 18: 2264. https://doi.org/10.3390/math9182264