An Efficient Chameleon Swarm Algorithm for Economic Load Dispatch Problem
Abstract
:1. Introduction
- ▪
- Discussion of the problems of economic load dispatch (ELD) and the combined emission and economic dispatch (CEED) for a six-unit network system.
- ▪
- The Chameleon Swarm Algorithm (CSA) is used as a new metaheuristic technique for the two case studies.
- ▪
- Minimizing the fuel cost is the main item in the objective function in the ELD problem.
- ▪
- Minimizing the fuel cost and emission cost are the main items in the objective function in the CEED problem.
- ▪
- A comparison between the proposed CSA method and other algorithms, such as the Sine Cosine Algorithm (SCA), Grey Wolf Optimization (GWO), and Earth Worm Algorithm (EWA), is undertaken for the two case studies.
- ▪
- The performance of all algorithms is measured according to the power mismatch factor in the ELD and CEED problems.
- ▪
- The maximum, mean, minimum, and standard deviation values of 30 independent runs were examined as statistical analyses for all applied algorithms.
2. Economic Load Dispatch Problem
2.1. ELD
2.2. CEED
3. Chameleon Swarm Algorithm (CSA)
3.1. Initialization and Function Evaluation
3.2. Search of Prey
3.3. Chameleon’s Eyes Rotation
- The first position of the chameleon is the focal point of gravity (i.e., the beginning);
- The rotation matrix is discovered that recognizes the position of the prey;
- The situation of the chameleon is refreshed utilizing the rotation matrix at the focal point of gravity;
- Finally, the chameleons are returned to the first position
3.4. Hunting Prey
4. Numerical Analysis of Results
4.1. Results of the ELD Problem
Load (MW) | Technique | Min | Mean | Max | SD |
---|---|---|---|---|---|
700 | CSA | 8528.091975 | 8922.841673 | 9093.525189 | 133.4072202 |
GWO | 554,192.147 | 8,523,819.629 | 29,793,196.04 | 7,437,182.379 | |
SCA | 7,680,621.197 | 69,654,953.61 | 203,722,478.8 | 42,769,492.03 | |
EWA | 14,863.57446 | 46,501,446.523 | 196,465,481.6 | 57,752,646.53 | |
1000 | CSA | 12,120.08172 | 12,311.32929 | 12,695.87285 | 115.7916315 |
GWO | 495,091.3593 | 12,418,496.27 | 39,059,487.38 | 9,946,760.603 | |
SCA | 1,836,263.786 | 126,730,461.9 | 620,534,587.7 | 122,987,260.2 | |
EWA | 44,518.42105 | 25,701,303.152 | 156,109,230.1 | 37,277,321.51 | |
1200 | CSA | 14,846.46878 | 14,964.33727 | 16,640.51747 | 319.5243805 |
GWO | 3,089,864.26 | 15,978,305.46 | 119,976,210.6 | 21,625,976.95 | |
SCA | 15,376,807.46 | 199,191,415.2 | 608,076,225.3 | 157,173,566.8 | |
EWA | 14,915.7328 | 71,604,765.525 | 564,214,908.2 | 121,880,902.4 |
Technique | 700 MW | 1000 MW | 1200 MW |
---|---|---|---|
CSA | 8528.091869 | 12,120.04448 | 14,846.46878 |
GWO | 8602.008494 | 12,363.08738 | 14,865.77008 |
SCA | 8717.700902 | 12,370.84528 | 14,962.38136 |
EWA | 9540.807338 | 14,612.63001 | 17,447.40468 |
CSA | GWO | SCA | EWA |
---|---|---|---|
201.2535201 | 165.20543 | 163.4754609 | 57.01527783 |
129.4000937 | 126.7615129 | 94.97953739 | 75.0047139 |
154.2857039 | 200.0201434 | 151.0967108 | 91.00020071 |
71.30891756 | 69.4678662 | 150 | 116.0167198 |
98.34085361 | 101.459958 | 84.37601099 | 124.0000002 |
57.66734009 | 50 | 69.14598368 | 248.4968272 |
CSA | GWO | SCA | EWA |
---|---|---|---|
403.4372818 | 500 | 273.3437231 | 56.00029022 |
142.9644621 | 151.23974 | 112.4433126 | 84.00042386 |
244.1627946 | 80.9641118 | 300 | 102.0006046 |
66.55584622 | 97.7893247 | 79.70060918 | 143.6741356 |
116.3668887 | 139.896394 | 141.6622318 | 149.0010695 |
50.00013166 | 52.367134 | 120 | 486.9954158 |
CSA | GWO | SCA | EWA |
---|---|---|---|
467.1166529 | 456.069504 | 500 | 51.02070233 |
192.0406171 | 160.473756 | 169.2380267 | 105.9965483 |
231.0401614 | 264.875181 | 300 | 132.0054405 |
126.9090868 | 138.920676 | 139.6603993 | 180.963024 |
147.2057156 | 109.351234 | 50 | 276.8977415 |
69.81050052 | 104.7556989 | 74.15460988 | 486.8740064 |
4.2. Results of CEED Problem
Load (MW) | Technique | Min | Mean | Max | SD |
---|---|---|---|---|---|
700 | CSA | 13,740.19426 | 15,341.954 | 16,374.91585 | 673.5762317 |
GWO | 99,263.42118 | 8,823,549.782 | 32,618,509.3 | 8,180,728.243 | |
SCA | 1,299,372.036 | 58,806,922.34 | 268,245,016.9 | 70,125,512.69 | |
EWA | 94,898.9244 | 36,933,381.1603 | 132,342,809.9 | 34,411,120.3 | |
1000 | CSA | 21,612.42374 | 22,386.89567 | 23,771.54396 | 526.6885085 |
GWO | 491,868.4754 | 10,247,754.87 | 43,428,023.49 | 9,546,163.002 | |
SCA | 12,621,456.9 | 87,188,746.09 | 305,519,608.7 | 64,964,750.28 | |
EWA | 70,176.0552 | 12,601,434.865 | 46,743,568.71 | 14,550,469.21 | |
1200 | CSA | 27,972.52315 | 28,378.16957 | 30,238.11598 | 430.7763349 |
GWO | 3,103,205.769 | 15,991,735.76 | 119,989,397.5 | 21,625,919.36 | |
SCA | 15,390,677.52 | 199,205,138 | 608,090,433.9 | 157,173,553.9 | |
EWA | 33,465.88848 | 78,645,451.7863 | 448,031,794.3 | 113,944,006.1 |
Technique | 700 MW | 1000 MW | 1200 MW | |||
---|---|---|---|---|---|---|
Fuel | Emission | Fuel | Emission | Fuel | Emission | |
CSA | 8462.268917 | 6792.11394 | 12,139.60382 | 10,527.9799 | 14,856.97546 | 15,211.91134 |
GWO | 8907.148297 | 12,152.50578 | 12,260.97086 | 8748.43968 | 14,865.77008 | 16,562.15696 |
SCA | 9066.659657 | 4136.630696 | 12,237.98949 | 9363.736686 | 14,962.38136 | 18,113.98812 |
EWA | 9368.5485 | 10,248.42837 | 13,633.57578 | 22,746.5453 | 16,837.91299 | 42,558.60192 |
CSA | GWO | SCA | EWA |
---|---|---|---|
258.0083211 | 115.216131 | 117.2751813 | 53 |
50.00000869 | 75.731398 | 200 | 84 |
167.3337086 | 300 | 80 | 109 |
106.613021 | 103.905314 | 50 | 135 |
73.44096019 | 67.6531736 | 200 | 158 |
56.5684972 | 52.354702 | 67.13006412 | 175 |
CSA | GWO | SCA | EWA |
---|---|---|---|
400.4399359 | 376.513695 | 394.8204572 | 78.0000557 |
140.5499372 | 200 | 157.0376964 | 94.17467563 |
195.0348613 | 137.696695 | 131.0117043 | 133.9999977 |
119.3390882 | 74.5127265 | 140.4159948 | 164.4652813 |
98.24778751 | 135.028378 | 119.2275839 | 265.4122572 |
69.56091425 | 100.274265 | 81.11261153 | 290.2872253 |
CSA | GWO | SCA | EWA |
---|---|---|---|
480.1323819 | 456.069504 | 500 | 87.99845176 |
171.3582298 | 160.473756 | 169.2380267 | 138.4838263 |
266.9421588 | 264.875181 | 300 | 154.9963726 |
78.28987273 | 138.920676 | 139.6603993 | 170.9819546 |
152.5502456 | 109.351234 | 50 | 249.9359313 |
85.07538079 | 104.7556989 | 74.15460988 | 432.8298403 |
4.3. Discussion of Results
5. Conclusions
- Improvement and hybridization of CSA;
- Using CSA for solving other complex power system optimization problems; for example, unit commitment and hydro-thermal scheduling.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sheta, A.; Faris, H.; Braik, M.; Mirjalili, S. Nature-inspired metaheuristics search algorithms for solving the economic load dispatch problem of power system: A comparison study. In Applied Nature-Inspired Computing: Algorithms and Case Studies; Springer: Berlin/Heidelberg, Germany, 2020; pp. 199–230. [Google Scholar]
- Deb, S.; Abdelminaam, D.S.; Said, M.; Houssein, E.H. Recent Methodology-Based Gradient-Based Optimizer for Economic Load Dispatch Problem. IEEE Access 2021, 9, 44322–44338. [Google Scholar] [CrossRef]
- Srivastava, A.; Das, D.K. A New Aggrandized Class Topper Optimization Algorithm to Solve Economic Load Dispatch Problem in a Power System. IEEE Trans. Cybern. 2020, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Deb, S.; Houssein, E.H.; Said, M.; Abdelminaam, D.S. Performance of Turbulent Flow of Water Optimization on Economic Load Dispatch Problem. IEEE Access 2021, 9, 77882–77893. [Google Scholar] [CrossRef]
- Gherbi, Y.A.; Lakdja, F.; Bouzeboudja, H.; Gherbi, F.Z. Hybridization of two metaheuristics for solving the combined economic and emission dispatch problem. Neural Comput. Appl. 2019, 31, 8547–8559. [Google Scholar] [CrossRef]
- Younes, Z.; Alhamrouni, I.; Mekhilef, S.; Reyasudin, M. A memory-based gravitational search algorithm for solving economic dispatch problem in micro-grid. Ain Shams Eng. J. 2021, 12, 1985–1994. [Google Scholar] [CrossRef]
- Sunanda, H.; Provas, K.R. Metaheuristic Moth-Flame Optimization Applied on Renewable Wind Energy Incor-porating Load Transmit Penetration. Int. J. Appl. Metaheuristic Comput. 2021, 12, 185–210. [Google Scholar]
- Bodha, K.D.; Yadav, V.K.; Mukherjee, V. A novel quantum inspired hybrid metaheuristic for dispatch of power system including solar photovoltaic generation. Energy Sources Part B Econ. Plan. Policy 2021, 16, 1–26. [Google Scholar] [CrossRef]
- Kapelinski, K.; Neto, J.P.J.; dos Santos, E.M. Firefly Algorithm with non-homogeneous population: A case study in economic load dispatch problem. J. Oper. Res. Soc. 2021, 72, 519–534. [Google Scholar] [CrossRef]
- Zare, M.; Narimani, M.R.; Malekpour, M.; Azizipanah-Abarghooee, R.; Terzija, V. Reserve constrained dynamic economic dispatch in multi-area power systems: An improved fireworks algorithm. Int. J. Electr. Power Energy Syst. 2021, 126, 106579. [Google Scholar] [CrossRef]
- Vasant, P.; Mahdi, F.P.; Marmolejo-Saucedo, J.A.; Litvinchev, I.; Aguilar, R.R.; Watada, J. Quantum-Behaved Bat Algorithm for Solving the Economic Load Dispatch Problem Considering a Valve-Point Effect. Res. Anthol. Adv. Quantum Technol. 2021, 11, 93–110. [Google Scholar] [CrossRef]
- El-Shorbagy, M.; Mousa, A.A. Constrained Multiobjective Equilibrium Optimizer Algorithm for Solving Combined Economic Emission Dispatch Problem. Complexity 2021, 2021, 1–14. [Google Scholar] [CrossRef]
- Navin, N.K. A Multiagent Fuzzy Reinforcement Learning Approach for Economic Power Dispatch Considering Multiple Plug-In Electric Vehicle Loads. Arab. J. Sci. Eng. 2021, 46, 1431–1449. [Google Scholar] [CrossRef]
- Al-Betar, M.A. Island-Based Harmony Search Algorithm for Non-convex Economic Load Dispatch Problems. J. Electr. Eng. Technol. 2021, 16, 1985–2015. [Google Scholar] [CrossRef]
- Singh, D.; Dhillon, J.S. Improved Directional Bat Algorithm Based Electric Power Dispatch. Electr. Power Compon. Syst. 2021, 48, 1–25. [Google Scholar] [CrossRef]
- Kaur, A.; Singh, L.; Dhillon, J. Modified Krill Herd Algorithm for constrained economic load dispatch problem. Int. J. Ambient. Energy 2021, 1–11. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, F.; Chi, M.; Wan, L. An Improved Symbiosis Particle Swarm Optimization for Solving Economic Load Dispatch Problem. J. Electr. Comput. Eng. 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Alanazi, M.S. A Modified Teaching—Learning-Based Optimization for Dynamic Economic Load Dispatch Considering Both Wind Power and Load Demand Uncertainties with Operational Constraints. IEEE Access 2021, 9, 101665–101680. [Google Scholar] [CrossRef]
- Tabassum, M.F.; Saeed, M.; Chaudhry, N.A.; Ali, J.; Farman, M.; Akram, S. Evolutionary simplex adaptive Hooke-Jeeves algorithm for economic load dispatch problem considering valve point loading effects. Ain Shams Eng. J. 2021, 12, 1001–1015. [Google Scholar] [CrossRef]
- Parouha, R.P.; Verma, P. An innovative hybrid algorithm to solve nonconvex economic load dispatch problem with or without valve point effects. Int. Trans. Electr. Energy Syst. 2021, 31, 12682. [Google Scholar] [CrossRef]
- Vasovala, P.J.; Mirchiwala, M.I.; Mayank, V.; Ghanchi, V.H. Application of ant colony optimization technique in economic load dispatch of IEEE-26 bus system with valve point loading. Int. J. Res. Appl. Sci. Eng. Technol. 2021, 9, 51–58. [Google Scholar] [CrossRef]
- Paramguru, J.; Barik, S.K.; Barisal, A.K.; Dhiman, G.; Jhaveri, R.H.; Alkahtani, M.; Abidi, M.H. Addressing Economic Dispatch Problem with Multiple Fuels Using Oscillatory Particle Swarm Optimization. Comput. Mater. Contin. 2021, 69, 2863–2882. [Google Scholar] [CrossRef]
- Kabir, A.M.; Kamal, M.; Ahmad, F.; Ullah, Z.; Albogamy, F.R.; Hafeez, G.; Mehmood, F. Optimized Economic Load Dispatch with Multiple Fuels and Valve-Point Effects Using Hybrid Genetic–Artificial Fish Swarm Algorithm. Sustainability 2021, 13, 10609. [Google Scholar] [CrossRef]
- Ho, Y.; Pepyne, D. Simple Explanation of the No-Free-Lunch Theorem and Its Implications. J. Optim. Theory Appl. 2002, 115, 549–570. [Google Scholar] [CrossRef]
- Adam, S.P.; Alexandropoulos, S.-A.N.; Pardalos, P.M.; Vrahatis, M.N. No Free Lunch Theorem: A Review. In Approximation and Optimization; Springer: Cham, Switzerland, 2019; pp. 57–82. [Google Scholar] [CrossRef]
- Ho, Y.-C.; Pepyne, D.L. Simple explanation of the no free lunch theorem of optimization. In Cybernetics and Systems Analysis, Proceedings of the IEEE Conference on Decision and Control (Cat. No.01CH37228); Orlando, FL, USA, 4–7 December 2001; IEEE: Piscataway, NJ, USA, 2002; Volume 5, pp. 4409–4414. [Google Scholar]
- Serafino, L. The No Free Lunch Theorem: What Are its Main Implications for the Optimization Practice? In Variational Analysis and Aerospace Engineering; Springer: Berlin/Heidelberg, Germany, 2021; Volume 170, pp. 357–372. [Google Scholar]
- Kang, J.-W.; Park, H.-J.; Ro, J.-S.; Jung, H.-K. A Strategy-Selecting Hybrid Optimization Algorithm to Overcome the Problems of the No Free Lunch Theorem. IEEE Trans. Magn. 2018, 54, 1–4. [Google Scholar] [CrossRef]
- Braik, M.S. Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering design problems. Expert Syst. Appl. 2021, 174, 114685. [Google Scholar] [CrossRef]
Item | Problem | Test Network | Load (MW) |
---|---|---|---|
1 | ELD | 6 | 1200 |
1000 | |||
700 | |||
2 | CEED | 6 | 1200 |
1000 | |||
700 |
Algorithms | Parameter Values |
---|---|
Common parameters | Size of population: N = 30 Number of iterations is 1000 |
CSA | p1, p2, ρ, c1, c2 are equal to 0.25, 1.50, 1.0 1.75, 1.75, respectively. |
GWO | a decreases linearly from 2 to 0 |
SCA | A = 2 |
EWA | A = 0.98, β0 = 1, and γ = 0.9 |
Cases | Algorithm | 700 MW | 1000 MW | 1200 MW |
---|---|---|---|---|
Case 1 | CSA | |||
GWO | ||||
SCA | 0.00076719 | |||
EWA | 5.71 | 20.1 | 23.4 | |
Case 2 | CSA | |||
GWO | ||||
SCA | 0.000128351 | 0.001259941 | 0.001536185 | |
EWA | 2.164245 | 9.051048781 | 17.36856684 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Said, M.; El-Rifaie, A.M.; Tolba, M.A.; Houssein, E.H.; Deb, S. An Efficient Chameleon Swarm Algorithm for Economic Load Dispatch Problem. Mathematics 2021, 9, 2770. https://doi.org/10.3390/math9212770
Said M, El-Rifaie AM, Tolba MA, Houssein EH, Deb S. An Efficient Chameleon Swarm Algorithm for Economic Load Dispatch Problem. Mathematics. 2021; 9(21):2770. https://doi.org/10.3390/math9212770
Chicago/Turabian StyleSaid, Mokhtar, Ali M. El-Rifaie, Mohamed A. Tolba, Essam H. Houssein, and Sanchari Deb. 2021. "An Efficient Chameleon Swarm Algorithm for Economic Load Dispatch Problem" Mathematics 9, no. 21: 2770. https://doi.org/10.3390/math9212770
APA StyleSaid, M., El-Rifaie, A. M., Tolba, M. A., Houssein, E. H., & Deb, S. (2021). An Efficient Chameleon Swarm Algorithm for Economic Load Dispatch Problem. Mathematics, 9(21), 2770. https://doi.org/10.3390/math9212770