Deep-Learning-Based Remaining Useful Life Prediction Based on a Multi-Scale Dilated Convolution Network
Abstract
:1. Introduction
- (1)
- Traditional CNNs have a fixed convolution kernel size for each convolution layer in the network. The ability to extract features for CNN would decline significantly under a strong noise environment because the specific scale convolution kernel can only learn feature information of the corresponding scale.
- (2)
- Numerous multi-scale CNN models [12,16,19] have been proposed recently to extract different-scale feature information. Even though these models improve the learning ability of the network, the existing multi-scale networks’ frameworks are all based on different sizes of convolution kernels. A multi-scale convolution framework based on multiple size convolution kernels requires more convolution operations, much greater computation, and a mass of weight parameters. A low operation speed severely restricts its application in engineering applications.
- (3)
- A complex network architecture that contains too many convolution layers is not appropriate for prognostic prediction. The increase in network depth does not further improve the network performance effectively [20], and the network training time increases dramatically. In addition, too deep of a network structure can easily result in overfitting in the case of small datasets.
2. Preliminaries
2.1. Convolutional Neural Network (CNN)
2.2. Dilated Convolution
2.3. Depthwise Separable Convolution (DSC)
3. Multi-Scale Dilated Convolution Network (MsDCN)
3.1. Multi-Scale Dilated Convolution Fusion Unit (MsDCFU)
3.2. Architecture of MsDCN
3.3. Sample Signal Processing and Label Generation
4. Experimental Verification
4.1. Data Descriptions
4.2. Experimental Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qiao, W.; Zhang, P.; Chow, M.-Y. Condition Monitoring, Diagnosis, Prognosis, and Health Management for Wind Energy Conversion Systems. IEEE Trans. Ind. Electron. 2015, 62, 6533–6535. [Google Scholar] [CrossRef]
- Huang, W.; Cheng, J.; Yang, Y.; Guo, G. An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis. Neurocomputing 2019, 359, 77–92. [Google Scholar] [CrossRef]
- Liao, L.; Köttig, F. Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction. IEEE Trans. Reliab. 2014, 63, 191–207. [Google Scholar] [CrossRef]
- Gebraeel, N.; Lawley, M.; Liu, R.; Parmeshwaran, V. Residual Life Predictions from Vibration-Based Degradation Signals: A Neural Network Approach. IEEE Trans. Ind. Electron. 2004, 51, 694–700. [Google Scholar] [CrossRef]
- Benkedjouh, T.; Medjaher, K.; Zerhouni, N.; Rechak, S. Remaining useful life estimationbased on nonlinear feature reduction and support vector regression. Eng. Appl. Artif. Intell. 2013, 26, 1751–1760. [Google Scholar] [CrossRef]
- Moosavian, A.; Ahmadi, H.; Tabatabaeefar, A.; Sakhaei, B. An appropriate procedure for detection of journal-bearing fault using power spectral density, k-nearest neighbor and support vector machine. Int. J. Smart Sens. Intell. Syst. 2017, 5, 685–700. [Google Scholar] [CrossRef] [Green Version]
- Dong, M.; He, D. A segmental hidden semi-Markov model (HSMM)-based diagnosticsand prognostics framework and methodology. Mech. Syst. Signal Process. 2007, 21, 2248–2266. [Google Scholar] [CrossRef]
- Liu, Z.; Zuo, M.J.; Qin, Y. Remaining useful life prediction of rolling element bearings based on health stateassessment. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2016, 230, 314–330. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y. Remaining useful life estimation of bearings utilizing the k-nearest neighbor classifier and Gaussian process regression. IPPTA Q. J. Indian Pulp Pap. Tech. Assoc. 2018, 30, 661–671. [Google Scholar]
- Ali, J.B.; Chebel-Morello, B.; Saidi, L.; Malinowski, S.; Fnaiech, F. Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network. Mech. Syst. Signal Process. 2015, 56–57, 150–172. [Google Scholar]
- Guo, L.; Lei, Y.; Li, N.; Yan, T.; Li, N. Machinery health indicator construction based on convolutional neural networks considering trend burr. Neurocomputing 2018, 292, 142–150. [Google Scholar] [CrossRef]
- Jiang, P.; Hu, Z.; Liu, J.; Yu, S.; Wu, F. Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network. Sensors 2016, 16, 1695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutsch, J.; He, D. Using Deep Learning-Based Approach to Predict Remaining Useful Life of Rotating Components. IEEE Trans. Syst. Man Cybern. Syst. 2017, 48, 11–20. [Google Scholar] [CrossRef]
- Hinchi, A.Z.; Tkiouat, M. Rolling element bearing remaining useful life estimation based on a convolutional long-short-term memory network. Procedia Comput. Sci. 2018, 127, 123–132. [Google Scholar] [CrossRef]
- Chu, C.H.; Lee, C.J.; Yeh, H.Y. Developing Deep Survival Model for Remaining Useful Life Estimation Based on Convolutional and Long Short-Term Memory Neural Networks. Wirel. Commun. Mob. Comput. 2020, 2020, 8814658. [Google Scholar] [CrossRef]
- Deng, F.; Ding, H.; Yang, S.; Hao, R. An improved deep residual network with multiscale feature fusion for rotating machinery fault diagnosis. Meas. Sci. Technol. 2020, 32, 024002. [Google Scholar] [CrossRef]
- Ren, L.; Sun, Y.; Wang, H.; Zhang, L. Prediction of bearing remaining useful life with deep convolution neuralnetwork. IEEE Access 2018, 6, 13041–13049. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Ding, Q. Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction. Reliab. Eng. Syst. Saf. 2019, 182, 208–218. [Google Scholar] [CrossRef]
- Li, H.; Zhao, W.; Zhang, Y.; Zio, E. Remaining useful life prediction using multi-scale deep convolutional neural network. Appl. Soft Comput. 2020, 89, 106113. [Google Scholar] [CrossRef]
- Li, X.; Ding, Q.; Sun, J.-Q. Remaining useful life estimation in prognostics using deep convolutionneural networks. Reliab. Eng. Syst. Saf. 2018, 172, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Li, C.; Peng, G.; Chen, Y.; Zhang, Z. A deep convolutional neural network with new trainingmethods for bearing fault diagnosis under noisy environmentand different working load. Mech. Syst. Sig. Process. 2018, 100, 439–453. [Google Scholar] [CrossRef]
- Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. In Proceedings of the International Conference on Learning Representations (ICLR 2016), San Juan, Puerto Rico, 2-4 May 2016. [Google Scholar]
- Zhang, H.; Zhang, W.; Shen, W.; Li, N.; Chen, Y.; Li, S.; Chen, B.; Guo, S.; Wang, Y. Automatic segmentation of the cardiac MR images based on nested fully convolutional dense network with dilated convolution. Biomed. Signal Process. Control 2021, 68, 102684. [Google Scholar] [CrossRef]
- Wei, Y.; Xiao, H.; Shi, H.; Jie, Z.; Feng, J.; Huang, T.S. Revisiting Dilated Convolution: A Simple Approach for Weakly- and Semi- Supervised Semantic Segmentation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–24 June 2018. [Google Scholar]
- Vorugunti, C.S.; Pulabaigari, V.; Mukherjee, P.; Sharma, A. DeepFuseOSV: Online signature verification using hybrid feature fusion and depthwise separable convolution neural network architecture. IET Biom. 2020, 9, 259–268. [Google Scholar] [CrossRef]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Jia, F.; Lei, Y.; Lu, N.; Xing, S. Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization. Syst. Sig. Process 2018, 110, 349–367. [Google Scholar] [CrossRef]
- Wang, B.; Lei, Y.; Li, N.; Yan, T. Deep separable convolutional network for remaining useful life prediction of machinery. Mech. Syst. Signal Process. 2019, 134, 106330. [Google Scholar] [CrossRef]
- Nectoux, P.; Gouriveau, R.; Medjaher, K.; Ramasso, E.; Chebel-Morello, B.; Zerhouni, N.; Varnier, C. PRONOSTIA: An experimental platform for bearings accelerated life test. In Proceedings of the IEEE International Conference on Prognostics and Health Management, Denver, CO, USA, 18 June 2012. [Google Scholar]
- IEEE PHM 2012 Data Challenge. Available online: http://www.femto-st.fr/f/d/IEEEPHM2012-Challenge-Details.pdf (accessed on 24 October 2021).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning forimage recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Zhao, R.; Yan, R.; Wang, J.; Mao, K. Learning to monitor machine health with convolutional bi-directional LSTM networks. Sensors 2017, 17, 273. [Google Scholar] [CrossRef]
Layer Type | Kernel Size/Stride | Dilation Rate d | Kernels Number/Sum | Padding |
---|---|---|---|---|
Standard convolution | Conv [1 × 49]/8 | 1 | 64/64 | Yes |
Maxpooling | [1 × 5]/1 | Yes | ||
MDCFU1 | DSC [1 × 5]/1 | 1/2/3/4 | 16/64 | Yes |
DSC [1 × 5]/1 | 1/2/3/4 | 16/64 | Yes | |
Maxpooling [1 × 3]/2 | Yes | |||
MDCFU2 | DSC [1 × 5]/1 | 1/2/3/4 | 16/64 | Yes |
DSC [1 × 5]/1 | 1/2/3/4 | 16/64 | Yes | |
Maxpooling [1 × 5]/2 | Yes | |||
MDCFU3 | DSC [1 × 5]/1 | 1/2/3/4 | 32/128 | Yes |
DSC [1 × 5]/1 | 1/2/3/4 | 32/128 | Yes |
MsDCFU Number | 2 | 3 | 4 | 5 |
---|---|---|---|---|
Training time/s | 23,374 | 23,886 | 24,979 | 25,958 |
Total model parameters | 57,537 | 73,153 | 112,321 | 168,129 |
Convolution Kernel Size | 1 × 3 | 1 × 5 | 1 × 7 | 1 × 9 |
---|---|---|---|---|
Training time/s | 23,527 | 23,886 | 24,188 | 24,490 |
Total model parameters | 69,568 | 73,153 | 76,737 | 80,321 |
Method | Total Model Parameters | Operation Time/s | |
---|---|---|---|
Training | Testing | ||
MS-DCNN | 1,864,833 | 56,574 | 13 |
MS-DRN | 113,889 | 46,748 | 12 |
Proposed method | 73,153 | 23,886 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, F.; Bi, Y.; Liu, Y.; Yang, S. Deep-Learning-Based Remaining Useful Life Prediction Based on a Multi-Scale Dilated Convolution Network. Mathematics 2021, 9, 3035. https://doi.org/10.3390/math9233035
Deng F, Bi Y, Liu Y, Yang S. Deep-Learning-Based Remaining Useful Life Prediction Based on a Multi-Scale Dilated Convolution Network. Mathematics. 2021; 9(23):3035. https://doi.org/10.3390/math9233035
Chicago/Turabian StyleDeng, Feiyue, Yan Bi, Yongqiang Liu, and Shaopu Yang. 2021. "Deep-Learning-Based Remaining Useful Life Prediction Based on a Multi-Scale Dilated Convolution Network" Mathematics 9, no. 23: 3035. https://doi.org/10.3390/math9233035
APA StyleDeng, F., Bi, Y., Liu, Y., & Yang, S. (2021). Deep-Learning-Based Remaining Useful Life Prediction Based on a Multi-Scale Dilated Convolution Network. Mathematics, 9(23), 3035. https://doi.org/10.3390/math9233035