Convergence Criteria of Three Step Schemes for Solving Equations
Abstract
:1. Introduction
2. Convergence for Majorizing Sequence
3. Semi-Local Convergence
- (A1)
- There exists such that and
- (A2)
- For eachSet where and is the closure of
- (A3)
- (A4)
- For each
- (A5)
- Conditions of Lemma 1 or Lemma 2 or Lemma 3 hold.and
- (A6)
- (or ).The semi-local convergence of scheme (2) is shown next.
4. Local Convergence
- (i)
- has a minimal zero where is some continuous and nondecreasing function. Let
- (ii)
- has a minimal zero where function is continuous and nondecreasing and is defined by
- (iii)
- has a minimal zero Let and
- (iv)
- has a smallest zero where
- (v)
- has a smallest zero whereSuppose
- (H1)
- For allLet
- (H2)
- For all
- (H3)
- (i)
- Point is a simple solution of equation
- (ii)
5. Numerical Experiments
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Argyros, I.K. On the Newton—Kantorovich hypothesis for solving equations. J. Comput. Math. 2004, 169, 315–332. [Google Scholar] [CrossRef] [Green Version]
- Argyros, I.K. Computational Theory of Iterative Schemes; Studies in Computational Mathematics Series, 15; Chui, C.K., Wuytack, L., Eds.; Elsevier Publ. Co.: New York, NY, USA, 2007. [Google Scholar]
- Argyros, I.K. Convergence and Applications of Newton-Type Iterations; Springer: Berlin, Germany, 2008. [Google Scholar]
- Argyros, I.K.; Hilout, S. Weaker conditions for the convergence of Newton’s scheme. J. Complex. 2012, 28, 364–387. [Google Scholar] [CrossRef] [Green Version]
- Argyros, I.K.; Hilout, S. On an improved convergence analysis of Newton’s scheme. Appl. Math. Comput. 2013, 225, 372–386. [Google Scholar]
- Argyros, I.K.; Magréñan, A.A. Iterative Schemes and Their Dynamics with Applications; CRC Press: New York, NY, USA, 2017. [Google Scholar]
- Argyros, I.K.; Magréñan, A.A. A Contemporary Study of Iterative Schemes; Elsevier: New York, NY, USA, 2018. [Google Scholar]
- Behl, R.; Maroju, P.; Martinez, E.; Singh, S. A study of the local convergence of a fifth order iterative scheme. Indian J. Pure Appl. Math. 2020, 51, 439–455. [Google Scholar]
- Cătinaş, E. The inexact, inexact perturbed, and quasi-Newton schemes are equivalent models. Math. Comput. 2005, 74, 291–301. [Google Scholar] [CrossRef]
- Chen, X.; Yamamoto, T. Convergence domains of certain iterative schemes for solving nonlinear equations. Numer. Funct. Anal. Optim. 1989, 10, 37–48. [Google Scholar] [CrossRef]
- Dennis, J.E., Jr.; Schnabel, R.B. Numerical Schemes for Unconstrained Optimization and Nonlinear Equations; SIAM: Philadelphia, PA, USA, 1996; First published by Prentice-Hall: Englewood Cliffs, NJ, USA, 1983. [Google Scholar]
- Deuflhard, P. Newton Schemes for Nonlinear Problems. Affine Invariance and Adaptive Algorithms; Springer Series in Computational Mathematics, 35; Springer: Berlin, Germany, 2004. [Google Scholar]
- Ezquerro, J.A.; Hernandez, M.A. Newton’s Scheme: An Updated Approach of Kantorovich’s Theory; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Grau-Sánchez, M.; Grau, À.; Noguera, M. Ostrowski type schemes for solving systems of nonlinear equations. Appl. Math. Comput. 2011, 281, 2377–2385. [Google Scholar]
- Gutiérrez, J.M.; Magreñán, Á.A.; Romero, N. On the semilocal convergence of Newton-Kantorovich scheme under center-Lipschitz conditions. Appl. Math. Comput. 2013, 221, 79–88. [Google Scholar]
- Hernandez, M.A.; Romero, N. On a characterization of some Newton-like schemes of R- order at least three. J. Comput. Appl. Math. 2005, 183, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Kantorovich, L.V.; Akilov, G.P. Functional Analysis; Pergamon Press: Oxford, UK, 1982. [Google Scholar]
- Magréñan, A.A.; Argyros, I.K.; Rainer, J.J.; Sicilia, J.A. Ball convergence of a sixth-order Newton-like scheme based on means under weak conditions. J. Math. Chem. 2018, 56, 2117–2131. [Google Scholar] [CrossRef]
- Nashed, M.Z.; Chen, X. Convergence of Newton-like schemes for singular operator equations using outer inverses. Numer. Math. 1993, 66, 235–257. [Google Scholar] [CrossRef]
- Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; SIAM Publ.: Philadelphia, PA, USA, 2000; First published by Academic Press: New York, NY, USA; London, UK, 1997. [Google Scholar]
- Potra, F.A.; Pták, V. Nondiscrete Induction and Iterative Processes; Research Notes in Mathematics, 103; Pitman (Advanced Publishing Program): Boston, MA, USA, 1984. [Google Scholar]
- Verma, R. New Trends in Fractional Programming; Nova Science Publisher: New York, NY, USA, 2019. [Google Scholar]
- Zabrejko, P.P.; Nguen, D.F. The majorant scheme in the theory of Newton-Kantorovich approximations and the Pták error estimates. Numer. Funct. Anal. Optim. 1987, 9, 671–684. [Google Scholar] [CrossRef]
- Proinov, P.D. General local convergence theory for a class of iterative processes and its applications to Newton’s scheme. J. Complex. 2009, 25, 38–62. [Google Scholar] [CrossRef] [Green Version]
- Proinov, P.D. New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems. J. Complex. 2010, 26, 3–42. [Google Scholar] [CrossRef] [Green Version]
- Rheinboldt, W.C. An Adaptive Continuation Process of Solving Systems of Nonlinear Equations; Polish Academy of Science, Banach Center Publications; Institute of Mathematics Polish Academy of Sciences, Instytut Matematyczny Polskiej Akademii Nauk: Warszawa, Poland, 1978; Volume 3, pp. 129–142. Available online: https://eudml.org/doc/208686 (accessed on 28 November 2021).
- Shakhno, S.M.; Iakymchuk, R.P.; Yarmola, H.P. Convergence analysis of a two step scheme for the nonlinear squares problem with decomposition of operator. J. Numer. Appl. Math. 2018, 128, 82–95. [Google Scholar]
- Sharma, J.R.; Guha, R.K.; Sharma, R. An efficient fourth order weighted—Newton scheme for systems of nonlinear equations. Numer. Algorithms 2013, 62, 307–323. [Google Scholar] [CrossRef]
- Soleymani, F.; Lotfi, T.; Bakhtiari, P. A multi-step class of iterative schemes for nonlinear systems. Optim. Lett. 2014, 8, 1001–1015. [Google Scholar] [CrossRef]
- Traub, J.F.; Werschulz, A.G. Complexity and Information, Lezioni Lince; Lincei Lectures; Cambridge University Press: Cambridge, UK, 1998; pp. xii+139. ISBN 0-521-48506-1. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Regmi, S.; Argyros, C.I.; Argyros, I.K.; George, S. Convergence Criteria of Three Step Schemes for Solving Equations. Mathematics 2021, 9, 3106. https://doi.org/10.3390/math9233106
Regmi S, Argyros CI, Argyros IK, George S. Convergence Criteria of Three Step Schemes for Solving Equations. Mathematics. 2021; 9(23):3106. https://doi.org/10.3390/math9233106
Chicago/Turabian StyleRegmi, Samundra, Christopher I. Argyros, Ioannis K. Argyros, and Santhosh George. 2021. "Convergence Criteria of Three Step Schemes for Solving Equations" Mathematics 9, no. 23: 3106. https://doi.org/10.3390/math9233106
APA StyleRegmi, S., Argyros, C. I., Argyros, I. K., & George, S. (2021). Convergence Criteria of Three Step Schemes for Solving Equations. Mathematics, 9(23), 3106. https://doi.org/10.3390/math9233106