An Extended log-Lindley-G Family: Properties and Experiments in Repairable Data
Abstract
:1. Introduction
2. The GLL-G Family
3. Special GLL Generalized Laws
3.1. The GLL-Exp Distribution
3.2. The GLL-MB Distribution
3.3. The GLL-L Distribution
4. Expansion for the Density Function
5. Mathematical Properties
5.1. Moments
5.2. Incomplete Moments
5.3. Generating Function
5.4. Mean Deviations
5.5. Moments of Residual and Reversed Lifetimes
6. Entropy
6.1. Rényi Entropy
6.2. Mathai–Haubold Entropy
7. Order Statistics
8. Estimation of the Parameters
9. Simulation Study
- Sample sizes: ;
- Additional parameters: , and ;
- Baseline parameter (exponential distribution): ;
- Figures of merit: bias and MSE.
10. Applications
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cordeiro, G.M.; Silva, R.B.; Nascimento, A.D.C. Recent Advances in Lifetime and Reliability Models; Bentham Science Publishers: Sharjah, United Arab Emirates, 2020. [Google Scholar]
- Lindley, D.V. Fiducial distributions and Bayes’ theorem. J. R. Stat. Soc. Ser. B Methodol. 1958, 20, 102–107. [Google Scholar] [CrossRef]
- Tomy, L. A retrospective study on Lindley distribution. Biom. Biostat. Int. J. 2018, 7, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Abouammoh, A.; Kayid, M. A new family of extended Lindley models: Properties, estimation and applications. Mathematics 2020, 8, 2146. [Google Scholar] [CrossRef]
- Al-Babtain, A.A.; Ahmed, A.H.N.; Afify, A.Z. A new discrete analog of the continuous Lindley distribution, with reliability applications. Entropy 2020, 22, 603. [Google Scholar] [CrossRef] [PubMed]
- Hafez, E.H.; Riad, F.H.; Mubarak, S.A.M.; Mohamed, M.S. Study on Lindley distribution accelerated life tests: Application and numerical simulation. Symmetry 2020, 12, 2080. [Google Scholar] [CrossRef]
- Al-Turk, L.I.; Al-Mutairi, N.N. Enhancing reliability predictions by considering learning effects based on one-parameter Lindley distribution. In Proceedings of the 2020 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), Gold Coast, QLD, Australia, 16–18 December 2020; pp. 1–7. [Google Scholar]
- Safari, M.A.M.; Masseran, N.; Majid, M.H. Robust reliability estimation for Lindley distribution—A probability integral transform statistical approach. Mathematics 2020, 8, 1634. [Google Scholar] [CrossRef]
- Shrahili, M.; Alotaibi, N.; Kumar, D.; Shafay, A.R. Inference on exponentiated power Lindley distribution based on order statistics with application. Complexity 2020, 2020, 4918342. [Google Scholar] [CrossRef]
- Gomez-Deniz, E.; Sordo, M.; Calderín-Ojeda, E. The log-lindley distribution as an alternative to the beta regression model with applications in insurance. Insur. Math. Econ. 2014, 54, 49–57. [Google Scholar] [CrossRef]
- Zakerzadeh, H.; Dolati, A. Generalized lindley distribution. J. Math. Ext. 2009, 3, 13–25. [Google Scholar]
- Jones, M.C. Families of distributions arising from distributions of order statistics. Test 2004, 13, 1–43. [Google Scholar] [CrossRef]
- Zografos, K.; Balakrishnan, N. On families of beta- and generalized gamma-generated distributions and associated inference. Stat. Methodol. 2009, 6, 344–362. [Google Scholar] [CrossRef]
- Ristic, M.; Balakrishnan, N. The gamma-exponentiated exponential distribution. J. Stat. Comput. Simul. 2012, 82, 1191–1206. [Google Scholar] [CrossRef]
- Amini, M.; MirMostafaee, S.M.T.K.; Ahmadi, J. Log-gamma generated families of distributions. Statistics 2013, 1, 1–20. [Google Scholar] [CrossRef]
- Alzaatreh, A.; Lee, C.; Famoye, F. A new method for generating families of continuous distributions. Metron 2013, 71, 63–79. [Google Scholar] [CrossRef] [Green Version]
- Jodrá, P.; Jiménez-Gamero, M.D. A note on the log-Lindley distribution. Insur. Math. Econ. 2016, 71, 189–194. [Google Scholar] [CrossRef]
- Ghitany, M.E.; Atieh, B.; Nadarajah, S. Lindley distribution and its application. Math. Comput. Simul. 2008, 78, 493–506. [Google Scholar] [CrossRef]
- Ghitany, M.; Al-Mutairi, D.; Balakrishnan, N.; Al-Enezi, L.J. Power lindley distribution and associated inference. Comput. Stat. Data Anal. 2013, 64, 20–33. [Google Scholar] [CrossRef]
- Sharma, V.; Singh, S.; Singh, U.; Agiwal, V. The inverse lindley distribution: A stress-strength reliability model with application to head and neck cancer data. J. Ind. Prod. Eng. 2015, 32, 162–173. [Google Scholar] [CrossRef]
- Barco, K.; Mazucheli, J.; Janeiro, V. The inverse power lindley distribution. Commun. Stat. Simul. Comput. 2017, 46, 6308–6323. [Google Scholar] [CrossRef]
- Asgharzadeh, A.; Nadarajah, S.; Sharafi, F. Generalized inverse lindley distribution with application to danish fire insurance data. Commun. Stat. Theory Methods 2015, 46, 5001–5021. [Google Scholar] [CrossRef]
- Ramos, P.; Louzada, F. The generalized weighted lindley distribution: Properties, estimation and applications. Cogent Math. 2016, 3, 11. [Google Scholar] [CrossRef]
- Bhati, D.; Malik, M.; Vaman, H.J. Lindley-exponential distribution: Properties and applications. Metron 2015, 73, 335–357. [Google Scholar] [CrossRef]
- Grassia, A. On a family of distributions with argument between 0 and 1 obtained by transformation of the gamma and derived compound distributions. Aust. J. Stat. 1977, 19, 108–114. [Google Scholar] [CrossRef]
- Nadarajah, S.; Kotz, S. The exponentiated type distributions. Acta Appl. Math. 2006, 92, 97–111. [Google Scholar] [CrossRef]
- Kullback, S. Information Theory and Statistics; Dover Books on Mathematics; Dover Publications: New York, NY, USA, 2012. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Technol. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Rényi, A. On measures of entropy and information. In Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 20 June–30 July 1961; Volume 1, pp. 547–561. [Google Scholar]
- Mathai, A.; Haubold, H. On generalized distributions and pathways. Phys. Lett. A 2008, 372, 2109–2113. [Google Scholar] [CrossRef] [Green Version]
- Nadarajah, S.; Zografos, K. Formulas for Rényi information and related measures for univariate distributions. Inf. Sci. 2003, 155, 119–138. [Google Scholar] [CrossRef]
- Nadarajah, S.; Zografos, K. Expressions for Rényi and Shannon entropies for bivariate distributions. Inf. Sci. 2005, 170, 173–189. [Google Scholar] [CrossRef]
- Almanjahie, I.M.; Dar, J.G.; Al-Omari, A.I.; Mir, A. Quantile version of Mathai-Haubold entropy of order statistics. Comput. Model. Eng. Sci. 2021, 128, 907–925. [Google Scholar] [CrossRef]
- Fashandi, M.; Ahmadi, J. Characterizations of symmetric distributions based on Rényi entropy. Stat. Probab. Lett. 2012, 82, 798–804. [Google Scholar] [CrossRef]
- Paul, J.; Thomas, P.Y. On some properties of Mathai-Haubold entropy of record values. J. Indian Soc. Probab. Stat. 2019, 20, 31–49. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 7th ed.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Hamedani, G.G.; Cordeiro, G.M.; Lima, M.C.S.; Nascimento, A.D.C. Some extended classes of distributions: Characterizations and properties. Pak. J. Stat. Oper. Res. 2017, 13, 893. [Google Scholar] [CrossRef] [Green Version]
Family | Survival Function (Parameter Restriction) | Density | Reference |
---|---|---|---|
Lindley distribution | |||
( and ) | [18] | ||
log-Lindley distribution | |||
( and ) | [10] | ||
Power-Lindley distribution | |||
() | [19] | ||
Power log-Lindley distribution | |||
[new] | |||
The inverse-Lindley distribution | |||
() | [20] | ||
The inverse power Lindley distribution | |||
() | [21] | ||
The weighted log-Lindley distribution | |||
and () | [new] | ||
Generalized inverse-Lindley distribution | |||
() | [22] | ||
Generalized weighted Lindley distribution | |||
() | [23] | ||
Lindley-exponential distribution | |||
() | [24] | ||
Transformed gamma distribution | |||
( and ) | [25] | ||
log-gamma generated family | |||
( and ) | [15] |
Points | n | Bias (MSE) | |||
---|---|---|---|---|---|
(2, 2, 2, 2) | 25 | 1.5367 (10.54) | 1.239 (16.13) | 5.1049 (116.94) | 0.5967 (3.24) |
50 | 0.7668 (2.84) | 1.0606 (12.66) | 3.6457 (77.04) | 0.3628 (0.47) | |
100 | 0.3838 (1.00) | 0.8153 (10.07) | 1.8592 (30.74) | 0.2577 (0.28) | |
200 | 0.2186 (0.45) | 0.6925 (7.65) | 0.4983 (6.83) | 0.1904 (0.17) | |
(2, 0.3, 2, 0.3) | 25 | 1.3201 (8.26) | 0.7664 (4.65) | 8.7398 (237.00) | 0.3545 (0.71) |
50 | 0.5266 (1.87) | 0.4327 (1.94) | 7.51 (191.22) | 0.1726 (0.34) | |
100 | 0.2541 (0.67) | 0.2858 (0.69) | 5.3906 (117.71) | 0.0512 (0.14) | |
200 | 0.0342 (0.19) | 0.1274 (0.25) | 3.1959 (45.99) | −0.021 (0.04) | |
(1.2, 3, 1.3, 2) | 25 | 0.2989 (0.63) | 3.9986 (77.26) | 2.9847 (52.37) | 3.5303 (36.28) |
50 | 0.1096 (0.20) | 4.4243 (82.09) | 1.4924 (23.35) | 3.1313 (25.91) | |
100 | 0.0443 (0.09) | 4.4327 (80.18) | 0.6669 (9.39) | 2.5906 (17.67) | |
200 | 0.0154 (0.05) | 4.032 (67.12) | 0.2413 (4.20) | 2.0593 (11.93) |
GLL-G | Estimates (SEs) | |||
---|---|---|---|---|
Models | ||||
GLL-Exp | 2.18 (0.37) | 2.01 (0.71) | 1.15 (0.45) | 1.12 (0.4) |
GLL-L | 2.70 (0.27) | 3.13 (1.55) | 4.49 (0.29) | 0.50 (0.24) |
GLL-MB | 0.41 (0.19) | 2.77 (0.41) | 3.32 (0.49) | 2.99 (0.01) |
GLL-G | GoF Measures | |||
---|---|---|---|---|
Models | AIC | AICc | BIC | K-S |
GLL-Exp | 87.24 | 88.84 | 92.84 | 0.63 |
GLL-MB | 88.67 | 90.27 | 94.28 | 0.97 |
GLL-L | 94.86 | 96.46 | 100.46 | 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd El-Bar, A.M.T.; da Silva, W.B.F.; Nascimento, A.D.C. An Extended log-Lindley-G Family: Properties and Experiments in Repairable Data. Mathematics 2021, 9, 3108. https://doi.org/10.3390/math9233108
Abd El-Bar AMT, da Silva WBF, Nascimento ADC. An Extended log-Lindley-G Family: Properties and Experiments in Repairable Data. Mathematics. 2021; 9(23):3108. https://doi.org/10.3390/math9233108
Chicago/Turabian StyleAbd El-Bar, Ahmed M. T., Willams B. F. da Silva, and Abraão D. C. Nascimento. 2021. "An Extended log-Lindley-G Family: Properties and Experiments in Repairable Data" Mathematics 9, no. 23: 3108. https://doi.org/10.3390/math9233108
APA StyleAbd El-Bar, A. M. T., da Silva, W. B. F., & Nascimento, A. D. C. (2021). An Extended log-Lindley-G Family: Properties and Experiments in Repairable Data. Mathematics, 9(23), 3108. https://doi.org/10.3390/math9233108