An Improved Alternating CQ Algorithm for Solving Split Equality Problems
Abstract
:1. Introduction
2. Preliminaries
- 1.
- ;
- 2.
- ;
- 3.
- .
- 4.
- .
- 1.
- ;
- 2.
- and ;
- 3.
- ;
- 4.
- .
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Censor, Y.; Elfving, T. A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 1994, 8, 221–239. [Google Scholar] [CrossRef]
- Byrne, C. A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Prob. 2004, 18, 103–120. [Google Scholar] [CrossRef] [Green Version]
- López, G.; Martín, V.; Wang, F.; Xu, H.K. Solving the split feasibility problem without prior knowledge of matrix norms. Inverse Probl. 2012, 28, 374–389. [Google Scholar] [CrossRef]
- Byrne, C. Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 2002, 18, 441–453. [Google Scholar] [CrossRef]
- Petrot, N.; Suwannaprapa, M.; Dadashi, V. Convergence theorems for split feasibility problems on a finite sum of monotone operators and a family of nonexpansive mappings. J. Inequal. Appl. 2018, 1, 2018. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Wu, J.; Liou, Y.C. Regularized methods for the split feasibility problem. Abstr. Appl. Anal. 2012, 1, 183–194. [Google Scholar] [CrossRef]
- Wang, F. Polyak’s gradient method for split feasibility problem constrained by level sets. Numer. Algorithms 2018, 77, 925–938. [Google Scholar] [CrossRef]
- Dong, Q.L.; Tang, Y.C.; Cho, Y.J.; Rassias, T.M. Optimal choice of the step length of the projection and contraction methods for solving the splity feasibility problem. J. Glob. Optim. 2018, 71, 341–360. [Google Scholar] [CrossRef]
- Censor, Y.; Xiao, Y.; Galvin, J.M. On linear infeasibility arising in intensity-modulated radiation therapy inverse planning. Linear Algebra Appl. 2008, 428, 1406–1420. [Google Scholar] [CrossRef] [Green Version]
- Lopez, G.; Martin, V.; Xu, H.K. Iterative algorithms for the multiple-sets split feasibility problem. Inverse Probl. 2009, 2009, 243–279. [Google Scholar]
- Chen, C.; Zhang, X.; Zhang, G.; Zhang, Y. A two-grid finite element method for nonlinear parabolic integro-differential equations. Int. J. Comput. Math. 2018, 96, 2010–2023. [Google Scholar] [CrossRef]
- Chen, C.; Liu, H.; Zheng, X.; Wang, H. A two-grid mmoc finite element method for nonlinear variable-order time-fractional mobile/immobile advection-diffusion equations. Comput. Math. Appl. 2020, 79, 2771–2783. [Google Scholar] [CrossRef]
- Palta, J.R.; Mackie, T.R.; Chen, Z. Intensity-modulated radiation therapy the state of the art. Med. Phys. 2003, 30, 3265. [Google Scholar] [CrossRef]
- Che, H.; Chen, H.; Wang, Y. On the M-eigenvalue estimation of fourth-order partially symmetric tensors. J. Ind. Manag. Optim. 2020, 16, 309–324. [Google Scholar] [CrossRef] [Green Version]
- Che, H.; Chen, H.; Wang, Y. C-eigenvalue inclusion theorems for piezoelectric-type tensors. Appl. Math. Lett. 2019, 89, 41–49. [Google Scholar] [CrossRef]
- Chen, H.; Huang, Z.H.; Qi, L. Copositivity detection of tensors:theory and algorithm. J. Optim. Theory Appl. 2017, 174, 746–761. [Google Scholar] [CrossRef]
- Chen, C.; Li, K.; Chen, Y.; Huang, Y. Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations. Adv. Comput. Math. 2019, 45, 611–630. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. Existence of infinitely solutions for a modified nonlinear Schrodinger equation via dual approach. Electron. J. Differ. Equ. 2018, 147, 1–15. [Google Scholar]
- Zhang, X.; Liu, L.; Wu, Y. Multiple positive solutions of a singular fractional differential equation with negatively perturbed term. Math. Comput. Model. 2012, 55, 1263–1274. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Y.; Cui, Y. Existence and nonexistence of blow-up solutions for a Schrdinger equation involving a nonlinear operator. Appl. Math. Lett. 2018, 82, 85–91. [Google Scholar] [CrossRef]
- Che, H.; Chen, H.; Li, M. A new simultaneous iterative method with a parameter for solving the extended split equality problem and the extended split equality fixed point problem. Numer. Algorithms 2018, 79, 1231–1256. [Google Scholar] [CrossRef]
- Censor, Y.; Elfving, T.; Kopf, N. The multiple-sets split feasibility problem and its applications for inverse problem. Inverse Probl. 2005, 21, 2071–2084. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Hu, Y.; Yu, C. A family of projection gradient methods for solving the multiple-sets split feasibility problem. J. Optim. Theory Appl. 2019, 183, 520–534. [Google Scholar] [CrossRef]
- Taddele, G.H.; Kumam, P.; Gebrie, A.G. An inertial extrapolation method for multiple-set split feasibility problem. J. Inequalities Appl. 2020, 1, 2020. [Google Scholar] [CrossRef]
- Combettes, P.L. The foundations of set theoretic estimation. Proc. IEEE 1993, 81, 182–208. [Google Scholar] [CrossRef]
- Censor, Y.; Bortfel, D.; Martin, B.; Trofimov, A. A unified approch for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 2006, 51, 2353–2365. [Google Scholar] [CrossRef] [Green Version]
- Attouch, H.; Redont, P.; Soubeyran, A. A new class of alternating proximal minimization algorithms with costs-to-move. SIAM J. Optim. 2007, 18, 1061–1081. [Google Scholar] [CrossRef]
- Byrne, C.; Moudafi, A. Extensions of the CQ algorithms for the split feasibility and split equality problems. Doc. Trav. 2012, 18, 1485–1496. [Google Scholar]
- Moudafi, A. Alternating CQ-algorithms for convex feasibility and split fixed-point problems. Doc. Trav. 2013, 15, 809–818. [Google Scholar]
- Che, H.; Chen, H. A relaxed self-adaptive projection algorithm for solving the multiple-sets split equality problem. J. Funct. Spaces 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Yao, Y.; Shahzad, N. Strong convergence of a proximal point algorithm with general errors. Optim. Lett. 2012, 6, 621–628. [Google Scholar] [CrossRef]
- Xu, H.K. Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 2002, 66, 240–256. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.-J.; Zhu, L.-J.; Tan, N.-N. An Improved Alternating CQ Algorithm for Solving Split Equality Problems. Mathematics 2021, 9, 3313. https://doi.org/10.3390/math9243313
He Y-J, Zhu L-J, Tan N-N. An Improved Alternating CQ Algorithm for Solving Split Equality Problems. Mathematics. 2021; 9(24):3313. https://doi.org/10.3390/math9243313
Chicago/Turabian StyleHe, Yan-Juan, Li-Jun Zhu, and Nan-Nan Tan. 2021. "An Improved Alternating CQ Algorithm for Solving Split Equality Problems" Mathematics 9, no. 24: 3313. https://doi.org/10.3390/math9243313
APA StyleHe, Y. -J., Zhu, L. -J., & Tan, N. -N. (2021). An Improved Alternating CQ Algorithm for Solving Split Equality Problems. Mathematics, 9(24), 3313. https://doi.org/10.3390/math9243313