Level Operators over Intuitionistic Fuzzy Index Matrices
Abstract
:1. Introduction
2. Preliminaries
3. Definition and Properties of the New Level Operators
3.1. Definition and Properties of the Operators from the First Group
- (a)
- ,
- (b)
- ,
- (c)
- ,
- (d)
- ,
- (e)
- ,
- (f)
- ,
- (g)
- ,
- (h)
- ,
- (i)
- ,
- (j)
- ,
- (k)
- ,
- (l)
- ,
- (m)
- ,
- (n)
- ,
- (o)
- ,
- (p)
- .
3.2. Definition and Properties of the Operators from the Second Group
4. An Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brown, W.C. Matrices and Vector Spaces; Marcel Dekker: New York, NY, USA, 1991. [Google Scholar]
- Lankaster, P. Theory of Matrices; Academic Press: New York, NY, USA, 1969. [Google Scholar]
- Atanassov, K. Generalized index matrices. Comptes Rendus De L’Academie Bulg. Des Sci. 1987, 40, 15–18. [Google Scholar]
- Atanassov, K. Index Matrices: Towards an Augmented Matrix Calculus; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Atanassov, K. Intuitionistic Fuzzy Logics; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Traneva, V. On 3-dimensional intuitionistic fuzzy index matrices. Notes Intuit. Fuzzy Sets 2014, 20, 59–64. [Google Scholar]
- Traneva, V. Internal operations over 3-dimensional extended index matrices. Proc. Jangjeon Math. Soc. 2015, 18, 547–569. [Google Scholar]
- Traneva, V. More basic operations and modal operators over 3-dimensional intuitionistic fuzzy index matrices. Notes Intuit. Fuzzy Sets 2014, 20, 17–25. [Google Scholar]
- Parvathi, R.; Thilagavathi, S.; Thamizhendhi, G.; Karunambigai, M.G. Index matrix representation of intuitionistic fuzzy graphs. Notes Intuit. Fuzzy Sets 2014, 20, 100–108. [Google Scholar]
- Traneva, V. One application of the index matrices for a solution of a transportation problem. Adv. Stud. Contemp. Math. 2016, 26, 703–715. [Google Scholar]
- Leyendekkers, J.; Shannon, A.; Rybak, J. Pattern Recognition: Modular Rings & Integer Structure; Raffles KvB Monograph No. 9; Raffles KvB Institute: North Sydney, Australia, 2007. [Google Scholar]
- Atanassov, K. Level operators over index matrices. Part 1: Index matrices with elements from a fixed interval. Annu. Inform. Sect. Union Sci. Bulg. 2019/2020, 10, 1–12. [Google Scholar]
- Angelova, N.; Stoenchev, M. Intuitionistic fuzzy conjunctions and disjunctions from first type. Annu. Inform. Sect. Union Sci. Bulg. 2015/2016, 8, 1–17. [Google Scholar]
- Angelova, N.; Stoenchev, M.; Todorov, V. Intuitionistic fuzzy conjunctions and disjunctions from second type. Issues Intuit. Fuzzy Sets Gen. Nets 2017, 13, 143–170. [Google Scholar]
- Angelova, N.; Stoenchev, M. Intuitionistic fuzzy conjunctions and disjunctions from third type. Notes Intuit. Fuzzy Sets 2017, 23, 29–41. [Google Scholar]
- Atanassov, K. On Intuitionistic Fuzzy Sets Theory; Springer: Berlin, Germany, 2012. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atanassov, K.; Vassilev, P.; Roeva, O. Level Operators over Intuitionistic Fuzzy Index Matrices. Mathematics 2021, 9, 366. https://doi.org/10.3390/math9040366
Atanassov K, Vassilev P, Roeva O. Level Operators over Intuitionistic Fuzzy Index Matrices. Mathematics. 2021; 9(4):366. https://doi.org/10.3390/math9040366
Chicago/Turabian StyleAtanassov, Krassimir, Peter Vassilev, and Olympia Roeva. 2021. "Level Operators over Intuitionistic Fuzzy Index Matrices" Mathematics 9, no. 4: 366. https://doi.org/10.3390/math9040366