A Moving-Mesh Finite-Difference Method for Segregated Two-Phase Competition-Diffusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Lotka-Volterra System
2.2. The Interface Conditions
2.3. The MMFDM Conservation Method
2.3.1. A Relative Conservation Principle
2.3.2. The Interface Condition
2.3.3. Numerical Solution
2.3.4. Rates of Change of the Total Populations
2.3.5. Approximating the Velocities
2.3.6. Time-Stepping
2.3.7. The Population Densities
2.3.8. Approximating the Interface
2.4. Algorithm
3. Results
3.1. A Parameter Choice
3.2. Other Parameter Choices
3.2.1. Carrying Capacities
3.2.2. Diffusion Characteristics
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MMFDM | Moving Mesh Finite Difference Method |
MMPDE | Moving Mesh Partial Differential Equations |
PDE | Partial Differential Equations |
References
- Guo, J.S.; Wu, C.H. Dynamics for a two-species competition–diffusion model with two free boundaries. Nonlinearity 2015, 28, 1–27. [Google Scholar] [CrossRef]
- Guo, J.S.; Wu, C.H. On a Free Boundary Problem for a Two-Species Weak Competition System. J. Dyn. Differ. Equ. 2012, 24, 873–895. [Google Scholar] [CrossRef]
- Wu, C.H. The minimal habitat size for spreading in a weak competition system with two free boundaries. J. Differ. Equ. 2015, 259, 873–897. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, J. Free Boundary Problems for a Lotka–Volterra Competition System. J. Dyn. Diff. Equ. 2014, 26, 655–672. [Google Scholar] [CrossRef] [Green Version]
- Gardner, R.A. Existence and stability of travelling wave solutions of competition models: A degree theoretic approach. J. Differ. Equ. 1982, 44, 343–364. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Liu, X. Numerical Methods for a Two-Species Competition-Diffusion Model with Free Boundaries. Mathematics 2018, 6, 72. [Google Scholar] [CrossRef] [Green Version]
- Watkins, A.R.; Baines, M.J. A Two-Phase Moving Mesh Finite Element Model of Segregated Competition-Diffusion Preprint MPCS-2018-07; Department of Mathematics and Statistics, University of Reading: Reading, UK, 2017. [Google Scholar]
- Budd, C.J.; Huang, W.; Russell, R.D. Adaptivity with moving grids. Acta Numer. 2009, 18, 111–241. [Google Scholar] [CrossRef]
- Beckett, G.; Mackenzie, J.A.; Robertson, M.L. A moving mesh finite element method for the solution of two-dimensional Stefan problems. J. Comput. Phys. 2001, 168, 500–518. [Google Scholar]
- Huang, W.; Ren, Y.; Russell, R.D. Moving mesh partial differential equations (MMPDEs) based on the equidistribution principle. SIAM J. Sci. Comput. 1994, 31, 709–730. [Google Scholar] [CrossRef]
- Miller, K.; Miller, R.N. Moving finite elements. I. SIAM J. Numer. Anal. 1981, 18, 1019–1032. [Google Scholar] [CrossRef]
- Miller, K. Moving finite elements. II. SIAM J. Numer. Anal. 1981, 18, 1033–1057. [Google Scholar] [CrossRef]
- Baines, M.J.; Hubbard, M.E.; Jimack, P.K. A moving mesh finite element algorithm for the adaptive solution of time-dependent partial differential equations with moving boundaries. Appl. Numer. Math. 2005, 54, 450–469. [Google Scholar] [CrossRef] [Green Version]
- Baines, M.J.; Hubbard, M.E.; Jimack, P.K. Velocity-based moving mesh methods for nonlinear partial differential equations. Commun. Comput. Phys. 2011, 10, 509–576. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.E.; Baines, M.J.; Langdon, S. A finite difference moving mesh method based on conservation for moving boundary problems. J. Comp. Appl. Math. 2015, 288, 1–17. [Google Scholar] [CrossRef]
- Baines, M.J.; Hubbard, M.E.; Jimack, P.K.; Mahmood, R. A moving-mesh finite element method and its application to the numerical solution of phase-change problems. Commun. Comput. Phys. 2009, 6, 595–624. [Google Scholar] [CrossRef] [Green Version]
- Hilhorst, D.; Mimura, M.; Schätzle, R. Vanishing latent heat limit in a Stefan-like problem arising in biology. Nonlinear Anal. Real World Appl. 2003, 4, 261–285. [Google Scholar]
- Harker, A.H. The classical Stefan problem: Basic concepts, modelling and analysis with quasi-analytical solutions and methods. Contemp. Phys. 2018, 59, 428–429. [Google Scholar] [CrossRef]
- Crooks, E.C.; Dancer, E.N.; Hilhorst, D.; Mimura, M.; Ninomiya, H. Spatial segregation limit of a competition-diffusion system with Dirichlet boundary conditions. Nonlinear Anal. Real World Appl. 2004, 5, 645–665. [Google Scholar] [CrossRef]
- Dancer, E.N.; Hilhorst, D.; Mimura, M.; Peletier, L.A. Spatial segregation limit of a competition-diffusion system. Eur. J. Appl. Math. 1999, 10, 97–115. [Google Scholar] [CrossRef]
- Hilhorst, D.; Iida, M.; Mimura, M.; Ninomiya, H. A competition–diffusion system approximation to the classical two-phase Stefan problem. Japan J. Indust. Appl. Math. 2001, 18, 161–180. [Google Scholar] [CrossRef]
- Hardin, G. The Competitive Exclusion Principle. Science 1960, 131, 1292–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Main, B.E. Solving Richards’ Equation Using Fixed and Moving Mesh Schemes. Master’s Thesis, Department of Mathematics, University of Reading, Reading, UK, 2011. [Google Scholar]
- Baines, M.J. Explicit time stepping for moving meshes. J. Math. Study 2015, 48, 93–105. [Google Scholar] [CrossRef]
- Watkins, A.R. A Moving Mesh Finite Element Method and Its Application to Population Dynamics. Ph.D. Thesis, University of Reading, Reading, UK, 2017. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baines, M.J.; Christou, K. A Moving-Mesh Finite-Difference Method for Segregated Two-Phase Competition-Diffusion. Mathematics 2021, 9, 386. https://doi.org/10.3390/math9040386
Baines MJ, Christou K. A Moving-Mesh Finite-Difference Method for Segregated Two-Phase Competition-Diffusion. Mathematics. 2021; 9(4):386. https://doi.org/10.3390/math9040386
Chicago/Turabian StyleBaines, Michael John, and Katerina Christou. 2021. "A Moving-Mesh Finite-Difference Method for Segregated Two-Phase Competition-Diffusion" Mathematics 9, no. 4: 386. https://doi.org/10.3390/math9040386
APA StyleBaines, M. J., & Christou, K. (2021). A Moving-Mesh Finite-Difference Method for Segregated Two-Phase Competition-Diffusion. Mathematics, 9(4), 386. https://doi.org/10.3390/math9040386