One Type of Symmetric Matrix with Harmonic Pell Entries, Its Inversion, Permanents and Some Norms
Abstract
:1. Introduction
2. Preliminaries
3. Harmonic Pell Numbers and Some Symmetric Matrices
- i.
- ii.
- i.
- ii.
4. Numerical Examples
5. Conclusions
- writes the matrix ,
- for the matrix ,
- i.
- calculates the row norm ,
- ii.
- calculates the column norm ,
- iii.
- gives an upper bound for the spectral norm ,
- iv.
- obtains
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Horadam, A.F. Pell identities. Fibonacci Q. 1971, 9, 245–252. [Google Scholar]
- Radičić, B. On k-Circulant Matrices Involving the Pell Numbers. Results Math. 2019, 74, 200. [Google Scholar] [CrossRef]
- Andrade, E.; Carrasco-Olivera, D.; Manzaneda, C. On circulant like matrices properties involving Horadam, Fibonacci, Jacobsthal and Pell numbers. Linear Algebra Appl. 2021, 617, 100–120. [Google Scholar] [CrossRef]
- Graham, R.; Knuth, D.; Patashnik, K. Concrete Mathematics; Addisson-Wesley: Reading, UK, 1989. [Google Scholar]
- Bahsi, M.; Solak, S. On the matrices with Harmonic numbers. GU. J. Sc. 2010, 23, 445–448. [Google Scholar]
- Das, K.C.; da Fonseca, C.M. Some spectral bounds for the harmonic matrix. Şt. Univ. Ovidius Constanţa 2017, 25, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Tuglu, N.; Kızılateş, C. On the norms of circulant and r-circulant matrices with the hyperharmonic Fibonacci numbers. J. Inequal. Appl. 2015, 2015, 253. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F. Matrix Theory; Basic Results and Techniques; Springer: New York, NY, USA, 1999. [Google Scholar]
- Horn, R.A.; Johnson, C.R. Matrix Analysis, Cambridge [Cambridge Shire]; Cambridge University Press: New York, NY, USA, 1985. [Google Scholar]
- Reams, R. Hadamard inverses, square roots and products of almost semidefinite matrices. Linear Algebra Appl. 1999, 288, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Akbulak, M.; Ipek, A. Hadamard exponential Hankel Matrix, its eigenvalues and some norms. Math. Sci. Lett. 2012, 1, 81–87. [Google Scholar]
- Bozkurt, D. A note on the spectral norms of the matrices connected integer numbers sequence. Math. GM 2011, 1724, 171–190. [Google Scholar]
- Solak, S.; Bahsi, M. On the spectral norms of Toeplitz matrices with Fibonacci and Lucas numbers. Nonlinear Anal. Hacet. J. Math. Stat. 2013, 42, 15–19. [Google Scholar]
- Marvin, M.; Henryk, M. Permanents. Am. Math. Mon. 1965, 72, 577–591. [Google Scholar] [CrossRef]
- Brualdi, R.A.; Gibson, P.M. Convex polyhedra of doubly stochastic matrices I: Applications of the permanent function. J. Combin. Theory A 1977, 22, 194–230. [Google Scholar] [CrossRef] [Green Version]
- Lehmer, D.H. Fibonacci and related sequences in periodic tridiagonal matrices. Fibonacci Q. 1975, 12, 150–158. [Google Scholar]
- Yılmaz, F.; Bozkurt, D. Hessenberg matrices and the Pell and Perrin numbers. J. Number Theory 2011, 131, 1390–1396. [Google Scholar] [CrossRef] [Green Version]
- Petroudi, S.H.J.; Pirouz, B. A particular matrix, Its inversion and some norms. Appl. Comput. Math. 2015, 4, 47–52. [Google Scholar] [CrossRef] [Green Version]
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | ||||||||||
1 |
clc |
---|
clear all |
n=input(’n=?’); |
f(1) = 1; |
f(2) = 2; |
g(1)=1; |
g(2)=1/2; |
for i = 3: n |
f(i) = 2*f(i-1) + f(i-2); |
g(i) =1/f(i); |
end |
b = g(1:n); |
t=cumsum(b); |
for i=1:n |
for j=1:n |
if i==j |
a(i,j)=t(i); |
elseif i<j |
a(i,j)=t(i); |
elseif i>j |
a(i,j)=t(j); |
end |
end |
end |
A = rats(a) |
for i = 1 : n |
c(i)=exp(2*t(i)); |
end |
d = c(1:n); |
rownorm_1 = cumsum(d); |
rownnorm=rownorm_1(n) |
e = c(1:n-1); |
columnnorm_2 = cumsum(e)+1; |
columnnorm=columnnorm_2(n-1) |
s_2normlessthan=(columnnorm_2(n-1)*rownorm_1(n)) |
for i = 1 : n |
f(i)=i*exp(2*t(i)); |
end |
g = f(1:n); |
x=cumsum(g); |
EuclidNorm=((2*n+1)*rownorm_1(n)-2*x(n)) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamaç Akbiyik, S.; Akbiyik, M.; Yilmaz, F. One Type of Symmetric Matrix with Harmonic Pell Entries, Its Inversion, Permanents and Some Norms. Mathematics 2021, 9, 539. https://doi.org/10.3390/math9050539
Yamaç Akbiyik S, Akbiyik M, Yilmaz F. One Type of Symmetric Matrix with Harmonic Pell Entries, Its Inversion, Permanents and Some Norms. Mathematics. 2021; 9(5):539. https://doi.org/10.3390/math9050539
Chicago/Turabian StyleYamaç Akbiyik, Seda, Mücahit Akbiyik, and Fatih Yilmaz. 2021. "One Type of Symmetric Matrix with Harmonic Pell Entries, Its Inversion, Permanents and Some Norms" Mathematics 9, no. 5: 539. https://doi.org/10.3390/math9050539
APA StyleYamaç Akbiyik, S., Akbiyik, M., & Yilmaz, F. (2021). One Type of Symmetric Matrix with Harmonic Pell Entries, Its Inversion, Permanents and Some Norms. Mathematics, 9(5), 539. https://doi.org/10.3390/math9050539