A Code for Simulating Heat Transfer in Turbulent Channel Flow
Abstract
:1. Introduction
2. Methods
3. Numerical Method
3.1. CFD Techniques
3.2. Time Discretization
4. Parallelization Strategy
- Direct and inverse Fourier transforms in x and z, as the nonlinear term has to be computed in physical space.
- Integration-derivation in y.
- Read data and configuration files: HDF5
- Runge–Kutta, data: , and in Fourier Space, distributed through the supercomputer with a shape.
- (a)
- Calculation of nonlinear terms (I). Time: 15% of total time
- .
- Compute statistical quantities of the flow if needed.
- Change shape from to
- Perform inverse transforms in z of and
- (b)
- Calculation on nonlinear terms (II). Time: 35% of total time
- Global transposes: Data is moved trough all the machine, from y–z planes into x-lines using MPI routines.
- (c)
- Calculation on nonlinear terms (III). Time:10% of total time
- Perform inverse transforms in x of and .
- Computes three technical buffers to compute later the nonlinear terms and . is computed here.
- Perform direct transforms in x of and
- (d)
- Calculation on nonlinear terms (IV). Time: 20% of total time
- Global transposes: Data is moved trough all the machine, from x-lines into y–z planes
- (e)
- Calculation on nonlinear terms (V). Time: 10% of total time
- Perform direct transforms in z of and
- Change shape from to
- (f)
- Solve viscous problem. This step requires 10% of total time.
- (g)
- Save data to disk if needed.
- (h)
- Move to the step 2a.
- End of program.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CFD | Compact Finite Differences |
DNS | Direct Numerical Simulation |
FD | Finite Differences |
FFT | Fast Fourier Transform |
LES | Large Eddy Simulations |
ODE | Ordinary differential equation |
PDE | Partial differential equation |
RANS | Reynolds Averaged Navier Stokes |
References
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Margot, X.; Hoyas, S.; Fajardo, P.; Patouna, S. A moving mesh generation strategy for solving an injector internal flow problem. Math. Comput. Model. 2010, 52, 1143–1150. [Google Scholar] [CrossRef] [Green Version]
- Margot, X.; Hoyas, S.; Fajardo, P.; Patouna, S. CFD study of needle motion influence on the exit flowconditions of single-hole injectors. At. Sprays 2011, 21, 31–40. [Google Scholar] [CrossRef]
- Escarti-Guillem, M.; Hoyas, S.; García-Raffi, L. Rocket plume URANS simulation using OpenFOAM. Results Eng. 2019, 4, 100056. [Google Scholar] [CrossRef]
- Lluesma-Rodríguez, F.; González, T.; Hoyas, S. CFD simulation of a hyperloop capsule inside a closed environment. Results Eng. 2021, 9, 100196. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Local structure of turbulence in an incompressible fluid at very high Reynolds numbers. Dokl. Akad. Nauk. 1941, 30, 9–13. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Dissipation of energy in isotropic turbulence. Dokl. Akad. Nauk. 1941, 32, 19–21. [Google Scholar]
- Samie, M.; Marusic, I.; Hutchins, N.; Fu, M.; Fan, Y.; Hultmark, M.; Smits, A. Fully resolved measurements of turbulent boundary layer flows up to Reτ = 20000. J. Fluid Mech. 2018, 851, 391–415. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Moin, P.; Moser, R. Turbulence statistics in fully developed channels flows at low Reynolds numbers. J. Fluid Mech. 1987, 177, 133–166. [Google Scholar] [CrossRef] [Green Version]
- Spalart, P. Direct simulation of a turbulent boundary layer up to Rθ = 1410. J. Fluid Mech. 1988, 187, 61–98. [Google Scholar] [CrossRef]
- Moser, R.; Kim, J.; Mansour, N. Direct numerical simulation of turbulent channel flow up to Reτ = 590. Phys. Fluids 1999, 11, 943–945. [Google Scholar] [CrossRef]
- Hoyas, S.; Jiménez, J. Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003. Phys. Fluids 2006, 18, 011702. [Google Scholar] [CrossRef] [Green Version]
- Hoyas, S.; Jiménez, J. Reynolds number effects on the Reynolds-stress budgets in turbulent channels. Phys. Fluids 2008, 20, 101511. [Google Scholar] [CrossRef] [Green Version]
- Simens, M.P.; Jimenez, J.; Hoyas, S.; Mizuno, Y. A high-resolution code for turbulent boundary layers. J. Comput. Phys. 2009, 228, 4218–4231. [Google Scholar] [CrossRef]
- Lee, M.; Moser, R. Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200. J. Fluid Mech. 2015, 774, 395–415. [Google Scholar] [CrossRef]
- Lozano-Durán, A.; Jiménez, J. Effect of the computational domain on direct simulations of turbulent channels up to Reτ = 4200. Phys. Fluids 2014, 26, 011702. [Google Scholar] [CrossRef]
- Bernardini, M.; Pirozzoli, S.; Orlandi, P. Velocity statistics in turbulent channel flow up to Reτ = 4000. J. Fluid Mech. 2014, 758, 327–343. [Google Scholar]
- Avsarkisov, V.; Hoyas, S.; Oberlack, M.; García-Galache, J. Turbulent plane Couette flow at moderately high Reynolds number. J. Fluid Mech. 2014, 751, R1. [Google Scholar] [CrossRef]
- Kraheberger, S.; Hoyas, S.; Oberlack, M. DNS of a turbulent Couette flow at constant wall transpiration up to Reτ = 1000. J. Fluid Mech. 2018, 835, 421–443. [Google Scholar] [CrossRef]
- Kim, J.; Moin, P. Transport of Passive Scalars in a Turbulent Channel Flow; NASA: Ames Research Center: Moffett Field, CA, USA, 1987; Volume 1, pp. 1–14. [Google Scholar]
- Lyons, S.; Hanratty, T.; McLaughlin, J. Direct numerical simulation of passive heat transfer in a turbulent channel flow. Int. J. Heat Mass Transf. 1991, 34, 1149–1161. [Google Scholar] [CrossRef]
- Kasagi, N.; Tomita, Y.; Kuroda, A. Direct Numerical Simulation of Passive Scalar Field in a Turbulent Channel Flow. J. Heat Transf. 1992, 114, 598–606. [Google Scholar] [CrossRef]
- Piller, M. Direct numerical simulation of turbulent forced convection in a pipe. Int. J. Numer. Methods Fluids 2005, 49, 583–602. [Google Scholar] [CrossRef]
- Yano, T.; Kasagi, N. Direct numerical simulation of turbulent heat transport at high Prandtl numbers. JSME Int. J. Ser. B Fluids Therm. Eng. 1999, 42, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Lluesma-Rodríguez, F.; Hoyas, S.; Peréz-Quiles, M. Influence of the computational domain on DNS of turbulent heat transfer up to Reτ = 2000 for Pr = 0.71. Int. J. Heat Mass Transf. 2018, 122, 983–992. [Google Scholar] [CrossRef]
- Alcántara-Ávila, F.; Hoyas, S.; Pérez-Quiles, M. DNS of thermal channel flow up to Reτ = 2000 for medium to low Prandtl numbers. Int. J. Heat Mass Transf. 2018, 127, 349–361. [Google Scholar] [CrossRef]
- Alcántara-Ávila, F.; Barberá, G.; Hoyas, S. Evidences of persisting thermal structures in Couette flows. Int. J. Heat Fluid Flow 2019, 76, 287–295. [Google Scholar] [CrossRef]
- Alcántara-Ávila, F.; Hoyas, S. Direct Numerical Simulation of thermal channel flow for medium–high Prandtl numbers up to Reτ = 2000. Int. J. Heat Mass Transf. 2021. submitted. [Google Scholar]
- Alcántara-Ávila, F.; Hoyas, S.; Pérez-Quiles, M. Direct Numerical Simulation of thermal channel fow for Reτ = 5000 and Pr = 0.71. Accept. J. Fluid Mech. 2021. [Google Scholar] [CrossRef]
- Gandía Barberá, S.; Alcántara-Ávila, F.; Hoyas, S.; Avsarkisov, V. Stratification effect on extreme-scale rolls in plane Couette flows. Phys. Rev. E 2021, 6, 034605. [Google Scholar] [CrossRef]
- Canuto, C.; Hussaini, M.Y.; Quarteroni, A.M.; Thomas, A., Jr. Spectral Methods in Fluid Dynamics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Del Alamo, J.; Jiménez, J.; Zandonade, P.; Moser, R. Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 2004, 500, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Hoyas, S.; Herrero, H.; Mancho, A. Thermocapillar and thermogravitatory waves in a convection problem. Theor. Comput. Fluid Dyn. 2004, 18, 309–321. [Google Scholar] [CrossRef]
- Hoyas, S.; Gil, A.; Fajardo, P.; Pérez-Quiles, M. Codimension-three bifurcations in a Bénard-Marangoni problem. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2013, 88, 015001. [Google Scholar] [CrossRef] [PubMed]
- Hoyas, S.; Fajardo, P.; Pérez-Quiles, M. Influence of geometrical parameters on the linear stability of a Bénard-Marangoni problem. Phys. Rev. E 2016, 93, 043105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lele, S.K. Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 1992, 103, 16–42. [Google Scholar] [CrossRef]
- Orszag, S.A.; Israeli, M. Numerical Simulation of Viscous Incompressible Flows. Annu. Rev. Fluid Mech. 1974, 6, 281–318. [Google Scholar] [CrossRef]
- Rubin, S.; Khosla, P. Polynomial interpolation methods for viscous flow calculations. J. Comput. Phys. 1977, 24, 217–244. [Google Scholar] [CrossRef]
- Spalart, P.R.; Moser, R.D.; Rogers, M.M. Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions. J. Comput. Phys. 1991, 96, 297–324. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lluesma-Rodríguez, F.; Álcantara-Ávila, F.; Pérez-Quiles, M.J.; Hoyas, S. A Code for Simulating Heat Transfer in Turbulent Channel Flow. Mathematics 2021, 9, 756. https://doi.org/10.3390/math9070756
Lluesma-Rodríguez F, Álcantara-Ávila F, Pérez-Quiles MJ, Hoyas S. A Code for Simulating Heat Transfer in Turbulent Channel Flow. Mathematics. 2021; 9(7):756. https://doi.org/10.3390/math9070756
Chicago/Turabian StyleLluesma-Rodríguez, Federico, Francisco Álcantara-Ávila, María Jezabel Pérez-Quiles, and Sergio Hoyas. 2021. "A Code for Simulating Heat Transfer in Turbulent Channel Flow" Mathematics 9, no. 7: 756. https://doi.org/10.3390/math9070756
APA StyleLluesma-Rodríguez, F., Álcantara-Ávila, F., Pérez-Quiles, M. J., & Hoyas, S. (2021). A Code for Simulating Heat Transfer in Turbulent Channel Flow. Mathematics, 9(7), 756. https://doi.org/10.3390/math9070756