Undertreatment and Underachievement of LDL-C Target among Individuals with High and Very High Cardiovascular Risk in the Malaysian Community
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Study Procedures
2.3. Blood Sampling and Laboratory Analysis
2.4. Definition of Terms
2.5. CV Risk Stratification, Dyslipidaemia Subtypes and LDL-C Target Levels
2.6. Statistical Analysis
3. Results
3.1. Participants Characteristics
3.2. The Overall Prevalence of Dyslipidaemia Subtypes
3.3. Proportions of LLT Use among HR and VHR Participants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Malaysian HEalth and Well-Being AssessmenT for Coronary Risk Epidemiological Study (MyHEBAT-CRES) Research Investigators
References
- Rehman, S.; Rehman, E.; Mumtaz, A.; Jianglin, Z. Cardiovascular Disease Mortality and Potential Risk Factor in China: A Multi-Dimensional Assessment by a Grey Relational Approach. Int. J. Public Health 2022, 67, 1604599. [Google Scholar]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Breuer, H.-W. Low Density Lipoprotein Cholesterol and Coronary Heart Disease—Lower is Better. Eur. Cardiol. 2005, 1, 1–6. [Google Scholar]
- Ho, L.T.; Yin, W.H.; Chuang, S.Y.; Tseng, W.K.; Wu, Y.W.; Hsieh, I.C.; Lin, T.H.; Li, Y.H.; Huang, L.C.; Wang, K.Y.; et al. Determinants for achieving the LDL-C target of lipid control for secondary prevention of cardiovascular events in Taiwan. PLoS ONE 2015, 10, e0116513. [Google Scholar] [CrossRef] [Green Version]
- Mortensen, M.B.; Nordestgaard, B.G. Elevated LDL cholesterol and increased risk of myocardial infarction and atherosclerotic cardiovascular disease in individuals aged 70–100 years: A contemporary primary prevention cohort. Lancet 2020, 396, 1644–1652. [Google Scholar] [CrossRef]
- Qiu, W.; Chen, J.; Huang, X.; Guo, J. The analysis of the lipid levels in patients with coronary artery disease after percutaneous coronary intervention: A one-year follow-up observational study. Lipids Health Dis. 2020, 19, 163. [Google Scholar] [CrossRef]
- Tall, A.R.; Thomas, D.G.; Gonzalez-Cabodevilla, A.G.; Goldberg, I.J. Addressing dyslipidemic risk beyond LDL-cholesterol. J. Clin. Investig. 2022, 132, e148559. [Google Scholar] [CrossRef]
- Caselli, C.; De Caterina, R.; Smit, J.M.; Campolo, J.; El Mahdiui, M.; Ragusa, R.; Clemente, A.; Sampietro, T.; Clerico, A.; Liga, R.; et al. Triglycerides and low HDL cholesterol predict coronary heart disease risk in patients with stable angina. Sci. Rep. 2021, 11, 20714. [Google Scholar] [CrossRef]
- World Health Organization. Noncommunicable Diseases: Risk Factors. The Global Health Observatory. Available online: https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/ncd-risk-factors (accessed on 8 November 2022).
- Pirillo, A.; Casula, M.; Olmastroni, E.; Norata, G.D.; Catapano, A.L. Global epidemiology of dyslipidaemias. Nat. Rev. Cardiol. 2021, 18, 689–700. [Google Scholar] [CrossRef]
- Lin, C.-F.; Chang, Y.-H.; Chien, S.-C.; Lin, Y.-H.; Yeh, H.-Y. Epidemiology of Dyslipidemia in the Asia Pacific Region. Int. J. Gerontol. 2018, 12, 2–6. [Google Scholar] [CrossRef]
- Institute for Public Health. National Health and Morbidity Survey 2015 (NHMS 2015). Vol. II: Non-Communicable Diseases, Risk Factors & Other Health Problems; Ministry of Health of Malaysia: Kuala Lumpur, Malaysia, 2015.
- Mohamed-Yassin, M.-S.; Baharudin, N.; Daher, A.M.; Abu Bakar, N.; Ramli, A.S.; Abdul-Razak, S.; Mohamed Noor Khan, N.-A.; Mohamad, M.; Yusoff, K. High prevalence of dyslipidaemia subtypes and their associated personal and clinical attributes in Malaysian adults: The REDISCOVER study. BMC Cardiovasc. Disord. 2021, 21, 149. [Google Scholar] [CrossRef]
- Nawawi, H.M.; Nor, I.M.; Noor, I.M.; Karim, N.A.; Arshad, F.; Khan, R.; Yusoff, K. Current Status of Coronary Risk Factors Among Rural Malays in Malaysia. J. Cardiovasc. Risk 2002, 9, 17–23. [Google Scholar] [CrossRef]
- Jacobson, T.A.; Ito, M.K.; Maki, K.C.; Orringer, C.E.; Bays, H.E.; Jones, P.H.; McKenney, J.M.; Grundy, S.M.; Gill, E.A.; Wild, R.A.; et al. National lipid association recommendations for patient-centered management of dyslipidemia: Part 1—Full report. J. Clin. Lipidol. 2015, 9, 129–169. [Google Scholar]
- Stone, N.J.; Bilek, S.; Fau-Rosenbaum, S.; Rosenbaum, S.; Am, J.C. Recent National Cholesterol Education Program Adult Treatment Panel III update: Adjustments and options. Am. J. Cardiol. 2015, 96, 53–59. [Google Scholar] [CrossRef]
- Health Technology Assessment Unit. Clinical Practice Guidelines on Management of Dyslipidaemia 2017, 5th ed.; Ministry of Health of Malaysia: Kuala Lumpur, Malaysia, 2017; Volume 17, ISBN 1468-201X. (Electronic).
- Baigent, C.; Blackwell, L.; Emberson, J.; Holland, L.E.; Reith, C.; Bhala, N.; Peto, R.; Barnes, E.H.; Keech, A.; Simes, J.; et al. Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010, 376, 1670–1681. [Google Scholar]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies with the special contribution of the European Association of Preventive Cardiology (EAPC). Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 2020, 41, 111–188. [Google Scholar]
- Chia, Y.C.; Gray, S.; Ching, S.M.; Lim, H.M.; Chinna, K. Validation of the Framingham general cardiovascular risk score in a multiethnic Asian population: A retrospective cohort study. BMJ Open 2015, 5, e007324. [Google Scholar] [CrossRef] [Green Version]
- Kotseva, K.; Wood, D.; De Bacquer, D.; De Backer, G.; Rydén, L.; Jennings, C.; Gyberg, V.; Amouyel, P.; Bruthans, J.; Castro Conde, A.; et al. EUROASPIRE IV: A European Society of Cardiology survey on the lifestyle, risk factor and therapeutic management of coronary patients from 24 European countries. Eur. J. Prev. Cardiol. 2015, 23, 636–648. [Google Scholar] [CrossRef]
- Yusuf, S.; Islam, S.; Chow, C.K.; Rangarajan, S.; Dagenais, G.; Diaz, R.; Gupta, R.; Kelishadi, R.; Iqbal, R.; Avezum, A.; et al. Use of secondary prevention drugs for cardiovascular disease in the community in high-income, middle-income, and low-income countries (the PURE Study): A prospective epidemiological survey. Lancet 2011, 378, 1231–1243. [Google Scholar] [CrossRef] [Green Version]
- Vedin, O.; Hagström, E.; Stewart, R.; Brown, R.; Krug-Gourley, S.; Davies, R.; Wallentin, L.; White, H.; Held, C. Secondary prevention and risk factor target achievement in a global, high-risk population with established coronary heart disease: Baseline results from the STABILITY study. Eur. J. Prev. Cardiol. 2013, 20, 678–685. [Google Scholar] [CrossRef]
- Mehta, R.H.; Bhatt, D.L.; Steg, P.G.; Goto, S.; Hirsch, A.T.; Liau, C.-S.; Röther, J.; Wilson, P.W.F.; Richard, A.-J.; Eagle, K.A.; et al. Modifiable risk factors control and its relationship with 1 year outcomes after coronary artery bypass surgery: Insights from the REACH registry. Eur. Heart J. 2008, 29, 3052–3060. [Google Scholar] [CrossRef] [Green Version]
- Devroey, D.; Radermecker, R.P.; Van der Schueren, B.J.; Torbeyns, B.; Jaken, R.J. Prevalence of persistent lipid abnormalities in statin-treated patients: Belgian results of the Dyslipidaemia International Study (DYSIS). Int. J. Clin. Pract. 2014, 68, 180–187. [Google Scholar] [CrossRef] [Green Version]
- Kotseva, K.; De Backer, G.; De Bacquer, D.; Rydén, L.; Hoes, A.; Grobbee, D.; Maggioni, A.; Marques-Vidal, P.; Jennings, C.; Abreu, A.; et al. Lifestyle and impact on cardiovascular risk factor control in coronary patients across 27 countries: Results from the European Society of Cardiology ESC-EORP EUROASPIRE V registry. Eur. J. Prev. Cardiol. 2019, 26, 824–835. [Google Scholar] [CrossRef]
- Kim, S.; Han, S.; Rane, P.P.; Qian, Y.; Zhao, Z.; Suh, H.S. Achievement of the low-density lipoprotein cholesterol goal among patients with dyslipidemia in South Korea. PLoS ONE 2020, 15, e0228472. [Google Scholar] [CrossRef] [Green Version]
- Rifin, H.M.; Gayle Robert Lourdes, T.; Liana Abdul Majid, N.; Akmal Abd Hamid, H.; Shakira Rodzlan Hasani, W.; Ling, M.; Arasu Saminathan, T.; Ismail, H.; Fadhli Mohd Yusoff, M.; Azahadi Omar, M. Hypercholesterolemia Prevalence, Awareness, Treatment and Control among Adults in Malaysia: The 2015 National Health and Morbidity Survey, Malaysia. Glob. J. Health Sci. 2018, 10, 11. [Google Scholar] [CrossRef]
- Baharudin, N.; Mohamed-Yassin, M.-S.; Daher, A.M.; Ramli, A.S.; Khan, N.-A.M.N.; Abdul-Razak, S. Prevalence and factors associated with lipid-lowering medications use for primary and secondary prevention of cardiovascular diseases among Malaysians: The REDISCOVER study. BMC Public Health 2022, 22, 228. [Google Scholar] [CrossRef]
- Firus Khan, A.Y.; Ramli, A.S.; Abdul Razak, S.; Mohd Kasim, N.A.; Chua, Y.-A.; Ul-Saufie, A.Z.; Jalaludin, M.A.; Nawawi, H. The Malaysian HEalth and WellBeing AssessmenT (MyHEBAT) Study Protocol: An Initiation of a National Registry for Extended Cardiovascular Risk Evaluation in the Community. Int. J. Environ. Res. Public Health 2022, 19, 11789. [Google Scholar] [CrossRef]
- Friedewald, W.; Levy, R.I.; Fredrickson, D.S.; Clin, C. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Department of Statistics Malaysia. Population Distribution and Basic Demographic Characteristics. 2010. Available online: https://www.mycensus.gov.my/index.php/census-product/publication/census-2010/659-population-distribution-and-basic-demographic-characteristics-2010 (accessed on 14 November 2022).
- Ministry of Health. Clinical Practice Guidelines on Management of Obesity 2004; Ministry of Health of Malaysia: Kuala Lumpur, Malaysia, 2004.
- Zainudin, S.; Daud, Z.; Mohamad, M.; Tong Boon, A.T.; Wan Mohamed, W.M.I. A Summary of the Malaysian Clinical Practice Guidelines on Management of Obesity 2004. J. ASEAN Fed. Endocr. Soc. 2014, 26, 101. [Google Scholar]
- World Health Organization, Regional Office for the WesternPacific. The Asia-Pacific Perspective: Redefining Obesity and Its Treatment; Health Communications Australia: Sydney, Australia, 2000; ISBN 0957708211. [Google Scholar]
- Ministry of Health. Malaysian Endocrine & Metabolic Society Clinical Practice Guideline: Management of Type 2 Diabetes Mellitus—Quick Reference Guide for Healthcare Professionals; Ministry of Health of Malaysia: Kuala Lumpur, Malaysia, 2016.
- Ministry of Health Malaysia. Clinical Practice Guidelines Management of Hypertension, 4th ed.; Ministry of Health Malaysia: Kuala Lumpur, Malaysia, 2008.
- National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002, 106, 3143–3421. [Google Scholar] [CrossRef]
- D’Agostino, R.B.; Vasan, R.S.; Pencina, M.J.; Wolf, P.A.; Cobain, M.; Massaro, J.M.; Kannel, W.B. General cardiovascular risk profile for use in primary care: The Framingham heart study. Circulation 2008, 117, 743–753. [Google Scholar] [CrossRef] [Green Version]
- Institute for Public Health. National Health and Morbidity Survey 2011 (NHMS 2011). Vol. II: NonCommunicable Diseases; Institute for Public Health (IPH): Kuala Lumpur, Malaysia, 2011. [Google Scholar]
- Febriani, D.; Febriani, B. The Effect of Lifestyle on Hypercholesterolemia. Open Public Health J. 2018, 11, 526–532. [Google Scholar] [CrossRef]
- Sun, G.-Z.; Li, Z.; Guo, L.; Zhou, Y.; Yang, H.-M.; Sun, Y.-X. High prevalence of dyslipidemia and associated risk factors among rural Chinese adults. Lipids Health Dis. 2014, 13, 189. [Google Scholar] [CrossRef] [Green Version]
- Aslesh, O.P.; Jayasree, A.K.; Karunakaran, U.; Venugopalan, A.K.; Divakaran, B.; Mayamol, T.R.; Sunil, C.B.; Minimol, K.J.; Shalini, K.; Mallar, G.B.; et al. Prevalence of hypercholesterolaemia among adults aged over 30 years in a rural area of north Kerala, India: A cross-sectional study. WHO South-East Asia J. Public Health 2016, 5, 70–75. [Google Scholar] [CrossRef] [Green Version]
- Stanaway, J.D.; Afshin, A.; Gakidou, E.; Lim, S.S.; Abate, D.; Abate, K.H.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Dise. Lancet 2018, 392, 1923–1994. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-S.; Wu, Y.; Lin, S.J.; Deerochanawong, C.; Zambahari, R.; Zhao, L.; Zhang, Q.; Yan, P. Current status of cholesterol goal attainment after statin therapy among patients with hypercholesterolemia in Asian countries and region: The Return on Expenditure Achieved for Lipid Therapy in Asia (REALITY-Asia) study. Curr. Med. Res. Opin. 2008, 24, 1951–1963. [Google Scholar] [CrossRef]
- Aekplakorn, W.; Taneepanichskul, S.; Kessomboon, P.; Chongsuvivatwong, V.; Putwatana, P.; Sritara, P.; Sangwatanaroj, S.; Chariyalertsak, S. Prevalence of Dyslipidemia and Management in the Thai Population, National Health Examination Survey IV, 2009. J. Lipids 2014, 2014, 249584. [Google Scholar] [CrossRef] [Green Version]
- Australian Bureau of Statistics. Australian health survey: Biomedical results for nutrients, 2011–2012 feature article: Iodine. J. Home Econ. Inst. Aust. 2014, 21, 32–34. [Google Scholar]
- Ministry of Health and National Institute of Health Research and Development. National Report on Basic Health Research, RISKESDAS, 2013. Jakarta, Indonesia, 2013. Available online: https://ghdx.healthdata.org/record/indonesia-basic-health-research-2013 (accessed on 8 November 2022).
- Nazri, S.M.; Tengku, M.A.; Winn, T. Lipid disorders among male factory shift workers in Kota Bharu, Kelantan. Med. J. Malays. 2007, 62, 134–138. [Google Scholar]
- Ministry of Health and National Institute of Health Research and Development. National Report on Basic Health Research, RISKESDAS, 2018. Jakarta, Indonesia, 2018. Available online: https://ghdx.healthdata.org/record/indonesia-basic-health-research-2018 (accessed on 8 November 2022).
- Song, P.; Man, Q.; Li, Y.; Jia, S.; Yu, D.; Zhang, J.; Ding, G. Association between Dietary Patterns and Low HDL-C among Community-Dwelling Elders in North China. Nutrients 2021, 13, 3308. [Google Scholar] [CrossRef]
- Ruiz-Ramie, J.J.; Barber, J.L.; Sarzynski, M.A. Effects of exercise on HDL functionality. Curr. Opin. Lipidol. 2019, 30, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Zhang, L.; Liu, A.; Li, S.; Wang, P. Prevalence, Awareness, Treatment, and Control of Dyslipidemia among Adults in Beijing, China. J. Atheroscler. Thromb. 2012, 19, 159–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, I.M.; Di Angelantonio, E.; Visseren, F.; De Bacquer, D.; Ference, B.A.; Timmis, A.; Halle, M.; Vardas, P.; Huculeci, R.; Cooney, M.-T. Systematic Coronary Risk Evaluation (SCORE): JACC Focus Seminar 4/8. J. Am. Coll. Cardiol. 2021, 77, 3046–3057. [Google Scholar] [CrossRef] [PubMed]
- Stone, N.J.; Robinson, J.G.; Lichtenstein, A.H.; Bairey Merz, C.N.; Blum, C.B.; Eckel, R.H.; Goldberg, A.C.; Gordon, D.; Levy, D.; Lloyd-Jones, D.M.; et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2014, 63, 2889–2934. [Google Scholar] [CrossRef] [Green Version]
- Kaptoge, S.; Pennells, L.; De Bacquer, D.; Cooney, M.T.; Kavousi, M.; Stevens, G.; Riley, L.M.; Savin, S.; Khan, T.; Altay, S.; et al. World Health Organization cardiovascular disease risk charts: Revised models to estimate risk in 21 global regions. Lancet Glob. Health 2019, 7, e1332–e1345. [Google Scholar] [CrossRef] [Green Version]
- Bi, L.; Yi, J.; Wu, C.; Hu, S.; Zhang, X.; Lu, J.; Liu, J.; Zhang, H.; Yang, Y.; Cui, J.; et al. Atherosclerotic Cardiovascular Disease Risk and Lipid-Lowering Therapy Requirement in China. Front. Cardiovasc. Med. 2022, 9, 686. [Google Scholar] [CrossRef]
- Yang, S.; Hwang, J.S.; Park, H.K.; Lee, H.S.; Kim, H.S.; Kim, E.Y.; Lim, J.S. Serum Lipid Concentrations, Prevalence of Dyslipidemia, and Percentage Eligible for Pharmacological Treatment of Korean Children and Adolescents; Data from the Korea National Health and Nutrition Examination Survey IV (2007–2009). PLoS ONE 2012, 7, e49253. [Google Scholar] [CrossRef] [Green Version]
- Committee of Clinical Practice. Guideline of the Korean Society of Lipid and Atherosclerosis 2018 Korean Guidelines for the Management of Dyslipidemia, 4th ed.; Korean Society of Lipid and Atherosclerosis (KSoLA): Seoul, Republic of Korea, 2018. (In English) [Google Scholar]
- Bruckert, E.; Parhofer, K.G.; Gonzalez-Juanatey, J.R.; Nordestgaard, B.; Arca, M.; Giovas, P.; Ray, K. Proportion of High-Risk/Very High-Risk Patients in Europe with Low-Density Lipoprotein Cholesterol at Target According to European Guidelines: A Systematic Review. Adv. Ther. 2020, 37, 1724–1736. [Google Scholar] [CrossRef]
- Rajadurai, J.; Wan Ahmad, W.A.; Nawawi, H.; Hooi, C.G.; Kiat, N.W.; Ali, R.M.; Omar, A.F.; Kasim, S.; Maskon, O.; Leng, D.Q.K. Updates in the management of dyslipidaemia in the high and very high risk individual for CV risk reduction. Med. J. Malays. 2018, 73, 154–162. [Google Scholar]
- Wan Azman, W.A. (Ed.) Annual Report of the NCVD-ACS Registry, 2018–2019; National Heart Association of Malaysia: Kuala Lumpur, Malaysia, 2022. [Google Scholar]
Demographic Characteristics | All Subjects (N = 5279) | Male (N = 1996) | Female (N = 3283) |
---|---|---|---|
Age (years), mean ± SD | 41.1 ± 14.8 | 43.8 ± 14.8 | 39.4 ± 14.6 |
Age group (years), n (%) | |||
18–29 | 1409 (26.7) | 410 (20.5) | 999 (30.4) |
30–39 | 1096 (20.8) | 391 (19.6) | 705 (21.5) |
40–49 | 1091 (20.7) | 419 (21.0) | 672(20.5) |
50–59 | 1020 (19.3) | 465 (23.3) | 555 (16.9) |
≥60 | 663 (12.6) | 311 (15.6) | 352 (10.7) |
Ethnicity, n (%) | |||
Malay | 3834 (72.6) | 1426 (71.4) | 2408 (73.3) |
Chinese | 170 (3.2) | 79 (4.0) | 91 (2.8) |
Indian | 101 (1.9) | 46 (2.3) | 55 (1.7) |
Indigenous/others | 1174 (22.2) | 445 (22.3) | 729 (22.2) |
Locality, n (%) | |||
Urban | 3086 (58.5) | 1146 (57.4) | 1940 (59.1) |
Rural | 2193 (41.5) | 850 (42.6) | 1343 (40.9) |
Education attainment*, n (%) | |||
No formal education | 229 (4.3) | 66 (3.3) | 163 (5.0) |
Primary education | 453 (8.6) | 187 (9.4) | 266 (8.1) |
Secondary education | 1684 (32.0) | 718 (36.0) | 966 (29.4) |
Tertiary education | 2346 (44.4) | 815 (40.8) | 1531 (46.6) |
Smoking status *, n (%) | |||
Non-smoker | 3937 (74.6) | 969 (48.5) | 2968 (90.4) |
Current smoker | 655 (12.4) | 625 (31.3) | 30 (0.9) |
Previous smoker | 534 (10.1) | 344 (17.2) | 190 (5.8) |
Alcohol consumption, n (%) | 183 (3.5) | 141 (7.0) | 42 (1.3) |
BMI (kg/m2) *, mean ± SD | 26.1 ± 5.4 | 26.2 ± 5.1 | 26.1 ± 5.6 |
BMI categories *, [kg/m²], n (%) | |||
Underweight (<18.5) | 285 (5.4) | 80 (4.0) | 205 (6.2) |
Normal (18.5–22.9) | 1187 (22.5) | 411 (20.6) | 776 (23.6) |
Overweight (23–27.4) | 1788 (33.9) | 729(36.5) | 1059 (32.3) |
Obese (≥27.5) | 1823 (34.5) | 691 (34.6) | 1132 (34.5) |
Waist circumference (cm), mean ± SD | 86.1 ± 13.3 | 90.4 ± 12.9 | 83.5 ± 12.8 |
Hip circumference (cm), mean ± SD | 100.3 ± 11.4 | 99.5 ± 10.3 | 100.8 ± 12.0 |
Central obesity *, n (%) | |||
Normal | 2186 (44.0) | 903 (48.3) | 1283 (41.5) |
Abdominal obesity (Male ≥90 cm; female ≥80 cm) | 2952 (56.0) | 1032 (51.7) | 1920 (58.5) |
Comorbidities *, n (%) | |||
Diabetes | 503 (9.5) | 250 (12.5) | 253 (7.7) |
FPG (mmol/L), mean ± SD | 5.5 ± 2.5 | 5.8 ± 3.1 | 5.3 ± 2.2 |
RBG (mmol/L), mean ± SD | 6.2 ± 3.3 | 6.6 ± 3.9 | 5.9 ± 2.9 |
Hypertension | 1662 (31.5) | 764 (38.3) | 898 (27.3) |
SBP (mm/Hg), mean ± SD | 124.0 ± 19.3 | 130.5 ± 17.3 | 120.0 ± 19.5 |
DBP (mm/Hg), mean ± SD | 76.9 ± 11.7 | 79.4 ± 11.5 | 75.4 ± 11.6 |
Existing CVD | 143 (2.7) | 82 (4.1) | 61 (1.9) |
Family history of PCAD, n (%) | 609 (11.5) | 223 (11.2) | 386 (11.7) |
Lipid profiles, mean ± SD | |||
TC (mmol/L) | 5.2 ± 1.2 | 5.3 ± 1.3 | 5.2 ± 1.2 |
TG (mmol/L) | 1.4 ± 0.9 | 1.7 ± 1.0 | 1.2 ± 0.8 |
LDL-C (mmol/L) | 3.2 ± 1.0 | 3.3 ± 1.1 | 3.1 ± 1.0 |
HDL-C (mmol/L) | 1.3 ± 0.4 | 1.1 ± 0.4 | 1.4 ± 0.4 |
Risk categories, n (%) | |||
Low | 3715 (70.4) | 1017 (50.9) | 2698 (88.2) |
Moderate | 462 (8.8) | 339 (17.0) | 123 (3.7) |
High | 503 (9.5) | 345 (17.3) | 158 (4.8) |
Very high | 599 (11.3) | 295 (14.8) | 304 (9.3) |
HC (TC > 5.2 mmol/L) | p-Value | Low HDL-C (<1.0 mmol/l [Males] & <1.2 mmol/L [Females]) | p-Value | High TG (TG >1.7 mmol/L) | p-Value | Elevated LDL-C | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
VHR (LDL-C ≥ 1.8 mmol/L) | HR (LDL-C > 2.6 mmol/L) | MR (LDL-C ≥ 3.0 mmol/L) | LR (LDL-C ≥ 3.0 mmol/L) | ||||||||
All (N = 5279) | 2717 (51.5) | 1521 (28.8) | 1782 (33.8) | 517 (9.8) | 452 (8.6) | 305 (5.8) | 1843 (34.9) | ||||
Gender, n (%) | |||||||||||
Male | 1119 (41.2) | <0.001 * | 606 (39.8) | <0.06 | 967 (54.3) | <0.001 * | 260 (50.3) | 296 (65.5) | 213 (69.8) | 523 (28.4) | <0.001 * |
Female | 1958 (58.8) | 915 (60.2) | 815 (45.7) | 257 (49.7) | 156 (34.5) | 92 (30.2) | 1320 (71.6) | ||||
Age category, n (%) | |||||||||||
18–29 | 395 (14.5) | <0.001 * | 288 (18.9) | <0.001 * | 193 (10.8) | <0.001 * | 20 (3.9) | 26 (5.8) | 0 (0.0) | 497 (27.0) | <0.001 * |
30–39 | 542 (19.9) | 354 (23.3) | 367 (20.6) | 39 (7.5) | 44 (9.7) | 3 (1.0) | 545 (29.6) | ||||
40–49 | 631 (23.2) | 372 (24.5) | 439 (24.6) | 122 (23.6) | 66 (14.6) | 80 (26.2) | 447 (24.3) | ||||
50–59 | 702 (25.8) | 324 (21.3) | 470 (26.4) | 184 (35.6) | 150 (33.2) | 126 (41.3) | 288 (15.6) | ||||
≥60 | 447 (16.5) | 183 (12.0) | 313 (17.6) | 152 (29.4) | 166 (36.7) | 96 (31.5) | 66 (3.6) | ||||
Ethnicity, n (%) | |||||||||||
Malay | 2069 (76.2) | <0.001 * | 1027 (67.5) | <0.001 * | 1251 (70.2) | <0.001 * | 375 (72.5) | 333 (73.7) | 215 (70.5) | 1429 (77.5) | <0.001 * |
Chinese | 87 (3.2) | 30 (2.0) | 67 (3.8) | 14 (2.7) | 7 (1.5) | 8 (2.6) | 60 (3.3) | ||||
Indian | 67 (2.5) | 46 (3.0) | 44 (2.5) | 21 (4.1) | 12 (2.7) | 5 (1.6) | 35 (1.9) | ||||
Indigenous | 494 (18.2) | 418 (27.5) | 420 (23.6) | 107 (20.7) | 100 (22.1) | 77 (25.2) | 319 (17.3) | ||||
Locality, n (%) | |||||||||||
Urban | 1499 (55.2) | <0.001 * | 871 (57.3) | 0.120 * | 1008 (56.6) | 0.013 * | 278 (53.8) | 231 (51.1) | 161 (52.8) | 1066 (57.8) | 0.028 * |
Rural | 1218 (44.8) | 650 (42.7) | 774 (43.4) | 239 (46.2) | 221 (49.9) | 144 (47.2) | 777 (42.2) | ||||
Education attainment, n (%) | |||||||||||
No formal education | 124 (5.2) | 0.144 * | 75 (5.4) | 0.028 * | 83 (5.2) | 0.011 * | 39 (8.5) | 27 (7.0) | 23 (8.5) | 56 (3.4) | <0.001 * |
Primary education | 73 (3.0) | 42 (3.0) | 49 (3.1) | 17 (3.7) | 13 (3.4) | 13 (4.8) | 40 (2.4) | ||||
Secondary education | 178 (7.4) | 116 (8.4) | 134 (8.4) | 55 (12.0) | 45 (11.7) | 33 (12.2) | 69 (4.2) | ||||
Tertiary education | 2032 (84.4) | 1155 (83.2) | 1327 (83.3) | 346 (75.7) | 298 (77.8) | 202 (74.5) | 1490 (90) | ||||
Smoking status, n (%) | |||||||||||
Non-smoker | 2012 (74.1) | <0.001 * | 1160 (76.3) | <0.001 * | 1214 (68.1) | <0.001 * | 344 (66.5) | 232 (51.3) | 186 (61.0) | 1553 (84.3) | <0.001 * |
Current smoker | 374 (13.8) | 245 (16.1) | 350 (19.6) | 95 (18.4) | 142 (31.4) | 75 (24.6) | 130 (7.1) | ||||
Previous smoker | 331 (12.2) | 116 (7.6) | 218 (12.2) | 78 (15.1) | 78 (17.3) | 44 (14.4) | 160 (8.7) | ||||
BMI categories, n (%) | |||||||||||
Underweight (<18.5) | 81 (3.1) | <0.001 * | 25 (1.7) | <0.001 * | 21 (1.2) | <0.001 * | 6 (1.2) | 12 (2.7) | 5 (1.7) | 75 (4.2) | <0.001 * |
Normal (18.5–22.9) | 464 (17.8) | 196 (13.2) | 200 (11.6) | 38 (7.6) | 53 (12.0) | 62 (21.6) | 386 (21.8) | ||||
Overweight (23–27.4) | 1001 (38.5) | 507 (34.2) | 653 (38.0) | 186 (37.3) | 203 (46.1) | 115 (40.1) | 646 (36.5) | ||||
Obese (≥27.5) | 1057 (40.6) | 755 (50.9) | 843 (49.1) | 269 (53.9) | 172 (39.1) | 105 (36.6) | 663 (37.5) | ||||
Central obesity, n (%) | |||||||||||
Normal | 909 (34.3) | <0.001 * | 393 (26.5) | <0.001 | 457 (26.4) | <0.001 * | 97 (19.4) | 136 (30.8) | 107 (36.5) | 718 (40.0) | <0.001 * |
Abdominal obesity | 1738 (65.7) | 1090 (73.5) | 1272 (73.6) | 404 (80.6) | 306 (69.2) | 186 (63.5) | 1079 (60.0) |
Risk Categories | On LLT, n (%) | Total | χ² Value (df) | p-Value ^ | LDL-C Target Levels Achievement +, n (%) | Total | χ² Value (df) | p-Value ^ | ||
---|---|---|---|---|---|---|---|---|---|---|
Yes | No | Achieved | Not Achieved | |||||||
Low (LR) | 94 (2.5) | 3621 (97.5) | 3715 (70.4) | 446.1 (3) | <0.001 | 42 (44.7) | 52 (55.3) | 94 (26.1) | 30.2 (3) | <0.001 |
Moderate (MR) | 59 (12.8) | 403 (87.2) | 462 (8.8) | 21 (35.6) | 38 (64.4) | 59 (16.4) | ||||
High (HR) | 62 (12.3) | 441 (87.7) | 503 (9.5) | 10 (16.1) | 52 (83.9) | 62 (17.2) | ||||
Very high (VHR) | 145 (24.2) | 454 (75.8) | 599 (11.3) | 23 (15.9) | 122 (84.1) | 145 (40.3) | ||||
i. CVD | 44 (30.8) | 99 (69.2) | 143 (23.9) | 5 (11.4) | 39 (88.6) | 44 (30.3) | ||||
ii. DM with risk factors | 101 (22.1) | 355 (77.9) | 456 (76.1) | 18 (17.8) | 83 (82.2) | 101 (69.7) | ||||
Total | 360 (6.8) | 4919 (93.2) | 5279 (100) | - | - | 96 (26.7) | 264 (73.3) | 360 (100) | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razman, A.Z.; Baharudin, N.; Mohd Kasim, N.A.; Al-Khateeb, A.; Ismail, Z.; Nawawi, H., on behalf of the MyHEBAT-CRES Investigators. Undertreatment and Underachievement of LDL-C Target among Individuals with High and Very High Cardiovascular Risk in the Malaysian Community. Healthcare 2022, 10, 2448. https://doi.org/10.3390/healthcare10122448
Razman AZ, Baharudin N, Mohd Kasim NA, Al-Khateeb A, Ismail Z, Nawawi H on behalf of the MyHEBAT-CRES Investigators. Undertreatment and Underachievement of LDL-C Target among Individuals with High and Very High Cardiovascular Risk in the Malaysian Community. Healthcare. 2022; 10(12):2448. https://doi.org/10.3390/healthcare10122448
Chicago/Turabian StyleRazman, Aimi Zafira, Noorhida Baharudin, Noor Alicezah Mohd Kasim, Alyaa Al-Khateeb, Zaliha Ismail, and Hapizah Nawawi on behalf of the MyHEBAT-CRES Investigators. 2022. "Undertreatment and Underachievement of LDL-C Target among Individuals with High and Very High Cardiovascular Risk in the Malaysian Community" Healthcare 10, no. 12: 2448. https://doi.org/10.3390/healthcare10122448
APA StyleRazman, A. Z., Baharudin, N., Mohd Kasim, N. A., Al-Khateeb, A., Ismail, Z., & Nawawi, H., on behalf of the MyHEBAT-CRES Investigators. (2022). Undertreatment and Underachievement of LDL-C Target among Individuals with High and Very High Cardiovascular Risk in the Malaysian Community. Healthcare, 10(12), 2448. https://doi.org/10.3390/healthcare10122448