Application of ERAS Protocol after VATS Surgery for Chronic Empyema in Immunocompromised Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
- Malignant neoplasms or hematological disease (e.g, marginal lymphomas, follicular lymphoma, myelomas, chronic lymphocytic leukemias, myelodysplasias, etc.) that induce immune dysfunction by inducing a deficiency of immune effector cells or dysfunction of activities such as alteration in the synthesis of antibodies, in detail, defect or deficiency in the production of antibodies;
- Human immunodeficiency virus (HIV) infection and acquired immunodeficiency syndrome (AIDS), which cause progressive depletion of CD4 T cells;
- Patients with chronic long-term diseases that damage the immune system, inducing immunosuppression (e.g., HCV- or HBV-related hepatopathy, poliomyelitis, neurological disorders, transplantation);
- Patients with a history of repeated hospitalization for infections in the last 3 months before the diagnosis of empyema;
- Patients with iatrogenic immunodeficiency resulting from treatments with drugs that suppress or block the immune system (e.g., cancer treatment, treatment received after an organ or stem cell transplant, high-dose corticosteroids, or treatments for autoimmune diseases).
2.2. ERAS Protocol
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Post-Operative Course Comparison of the ERAS Group and Non-ERAS Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Statement of Ethics
References
- Bagheri, R.; Haghi, S.Z.; Dalouee, M.N.; Rajabnejad, A.; Basiri, R.; Hajian, T. Effect of decortication and pleurectomy in chronic empyema patients. Asian Cardiovasc. Thorac. Ann. 2016, 24, 245–249. [Google Scholar] [CrossRef]
- Rzyman, W.; Skokowski, J.; Romanowicz, G.; Lass, P.; Dziadziuszko, R. Decortication in chronic pleural empyema-effect on lung function. Eur. J. Cardiothorac. Surg. 2002, 21, 502–507. [Google Scholar] [CrossRef] [Green Version]
- Reichert, M.; Pösentrup, B.; Hecker, A.; Schneck, E.; Pons-Kühnemann, J.; Augustin, F.; Padberg, W.; Öfner, D.; Bodner, J. Thoracotomy versus video-assisted thoracoscopic surgery (VATS) in stage III empyema-an analysis of 217 consecutive patients. Surg. Endosc. 2018, 32, 2664–2675. [Google Scholar] [CrossRef] [PubMed]
- Jindal, R.; Nar, A.S.; Mishra, A.; Sing, P.R.; Aggarwal, A.; Bansal, N. Video-assisted thoracoscopic surgery versus open thoracotomy in the management of empyema: A comparative study. J. Minim. Access Surg. 2021, 17, 470–478. [Google Scholar] [PubMed]
- Varadhan, K.K.; Neal, K.R.; Dejong, C.H.C.; Fearon, K.C.H. The enhanced recovery after surgery (ERAS) pathway for patients undergoing major elective open colorectal surgery: A meta-analysis of randomized controlled trials. Clin. Nutr. 2010, 29, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Batchelor, T.J.P.; Rasburn, N.J.; Abdelnour-Berchtold, E.; Brunelli, A.; Cerfolio, R.J.; Gonzalez, M.; Ljungqvist, O.; Petersen, R.H.; Popescu, W.M.; Slinger, P.D.; et al. Guidelines for enhanced recovery after lung surgery: Recommendations of the Enhanced Recovery After Surgery (ERAS®) Society and the European Society of Thoracic Surgeons (ESTS). Eur. J. Cardiothorac. Surg. 2019, 55, 91–115. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.J.; Bleetman, D.; Messenger, D.E.; Joshi, N.A.; Wood, L.; Rasburn, N.J.; Batchelor, T.J.P. The impact of enhanced recovery after surgery (ERAS) protocol compliance on morbidity from resection for primary lung cancer. J. Thorac. Cardiovasc. Surg. 2018, 155, 1843–1852. [Google Scholar] [CrossRef] [Green Version]
- Semenkovich, T.R.; Hudson, J.L.; Subramanian, M.; Kozower, B.D. Enhanced Recovery after Surgery (ERAS) in Thoracic Surgery. Semin. Thorac. Cardiovasc. Surg. 2018, 30, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Mazza, F.; Venturino, M.; Turello, D.; Gorla, A.; Degiovanni, C.; Gambera, G.; Locatelli, A.; Melloni, G. Enhanced recovery after surgery: Adherence and outcomes in elderly patients undergoing VATS lobectomy. Gen. Thorac. Cardiovasc. Surg. 2020, 68, 1003–1010. [Google Scholar] [CrossRef]
- Hajjar, W.M.; Ahmed, I.; Al-Nassar, S.A.; Alsultan, R.K.; Alwgait, W.A.; Alkhalaf, H.H.; Bisht, S.C. Video-assisted thoracoscopic decortication for the management of late stage pleural empyema, is it feasible? Ann. Thorac. Med. 2016, 11, 71–78. [Google Scholar] [CrossRef]
- Shen, K.R.; Bribriesco, A.; Crabtree, T.; Denlinger, C.; Eby, J.; Eiken, P.; Jones, D.R.; Keshavjee, S.; Maldonado, F.; Paul, S.; et al. The American Association for Thoracic Surgery consensus guidelines for the management of empyema. Cochrane Database Syst. Rev. 2017, 17, 010651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, J.R.; Casal, R.F.; Lazarus, D.R.; Ost, D.E.; Eapen, G.A. Flexible Bronchoscopy. Clin. Chest. Med. 2018, 39, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ogake, S.; Bellinger, C. Role of Bronchoscopy in Atelectasis. Clin. Pulm. Med. 2020, 27, 30–32. [Google Scholar] [CrossRef]
- Brims, F.J.H.; Lansley, S.M.; Lee, Y.C.G. Empyema thoracis: New insights into an old disease. Eur. Respir. Rev. 2021, 19, 220–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahangir, A.; Sahra, S.; Anwar, S.; Mobarakai, N.; Jahangir, A. Catastrophic right-sided Candida empyema from spontaneous esophageal perforation. Respir. Med. Case Rep. 2021, 28, 101460. [Google Scholar] [CrossRef] [PubMed]
- Fiorelli, A.; Messina, G.; Capaccio, D.; Santini, M. Recurrent spontaneous pneumomediastinum: A rare but possible event! J. Thorac. Dis. 2012, 4, 431–433. [Google Scholar]
- Xia, Z.; Qiao, K.; Wang, H.; Ning, X.; He, J. Outcomes after implementing the enhanced recovery after surgery protocol for patients undergoing tuberculous empyema operations. J. Thorac. Dis. 2017, 9, 2048–2053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pulle, M.V.; Tiwari, N.; Asaf, B.B.; Puri, H.V.; Bishnoi, S.; Gopinath, S.K.; Kumar, A. Does an enhanced recovery after surgery protocol affect perioperative surgicaloutcomes in stage III tubercular empyema? A comparative analysis of 243 patients. Asian Cardiovasc. Thorac. Ann. 2021, 29, 105–110. [Google Scholar] [CrossRef]
- Lemiech-Mirowska, E.; Kiersnowska, Z.M.; Michałkiewicz, M.; Depta, A.; Marczak, M. Nosocomial infections as one of the most important problems of healthcare system. Ann. Agric. Environ. Med. 2021, 16, 361–366. [Google Scholar] [CrossRef]
- Liu, Z.; Qiu, T.; Pei, L.; Zhang, Y.; Xu, L.; Cui, Y.; Liang, N.; Li, S.; Chen, W.; Huang, Y. Two-Week Multimodal Prehabilitation Program Improves Perioperative Functional Capability in Patients Undergoing Thoracoscopic Lobectomy for Lung Cancer: A Randomized Controlled Trial. Anesth. Analg. 2020, 131, 840–849. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; Minnella, E.M.; Awashti, R.; Gammsa, A.; Ferri, L.; Mulder, D.; Sirois, C.; Spicer, J.; Schmid, S.; Carli, F. Multimodal Prehabilitation for Lung Cancer Surgery: A Randomized Controlled Trial. Ann. Thorac. Surg. 2021, 112, 1600–1608. [Google Scholar] [CrossRef]
- Brocki, B.C.; Andreasen, J.J.; Langer, D.; Souza, D.S.R.; Westerdahl, E. Post-operative inspiratory muscle training in addition to breathing exercises and early mobilization improves oxygenation in high-risk patients after lung cancer surgery: A randomized controlled trial. Eur. J. Cardiothorac. Surg. 2016, 49, 1483–1491. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Q.; Liu, X.; Jia, Y.; Xie, J. Impact of breathing exercises in subjects with lung cancer undergoing surgical resection: A systematic review and meta-analysis. J. Clin. Nurs. 2019, 28, 717–732. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Lorente, D.; Navarro-Ripoll, R.; Guzman, R.; Moises, J.; Gimeno, E.; Boada, M.; Molins, L. Prehabilitation in thoracic surgery. J. Thorac. Dis. 2018, 10, S2593–S2600. [Google Scholar] [CrossRef]
- Licker, M.; Schnyder, J.M.; Frey, J.G.; Diaper, J.; Cartier, V.; Inan, C.; Robert, J.; Bridevaux, P.; Tschopp, J. Impact of aerobic exercise capacity and procedure-related factors in lung cancer surgery. Eur. Respir. J. 2011, 37, 1189–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebio, G.R.; Yáñez-Brage, M.I.; Giménez, M.E.; Riobo, M.S.; Paz, A.L.; Mate, J.M.B. Preoperative exercise training prevents functional decline after lung resection surgery: A randomized, single-blind controlled trial. Clin. Rehabil. 2017, 31, 1057–1067. [Google Scholar] [CrossRef] [PubMed]
- Kendall, F.; Abreu, P.; Pinho, P.; Oliveria, J.; Bastos, P. The role of physiotherapy in patients undergoing pulmonary surgery for lung cancer. A literature review. Rev. Port. Pneumol. 2017, 23, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, A.; Hajibagheri, A.; Azizi-Fini, I.; Atoof, F.; Mousavi, N. Effect of an early mobilisation programme on pain intensity after laparoscopic surgery: A randomised clinical trial. BMJ Support. Palliat. Care 2020. [Google Scholar] [CrossRef] [PubMed]
- Martos-Benìtez, F.D.; Gutiérrez-Noyola, A.; Soto-Garcìa, A.; Gonzalez-Martinez, I.; Plaza, B.I. Program of gastrointestinal rehabilitation and earlt post-operative enteral nutrition: A prospective study. Updates Surg. 2018, 70, 105–112. [Google Scholar] [CrossRef]
- Talec, P.; Gaujoux, S.; Samama, C.M. Early ambulation and prevention of post-operative thrombo-embolic risk. J. Visc. Surg. 2016, 153, S11–S14. [Google Scholar] [CrossRef]
- Alam, M.S.; Haseen, M.A.; Aslam, M.; Beng, M.H. Use of thopaz in patients of empyema thoracis undergoing decortication. Lung. India 2020, 37, 511–517. [Google Scholar] [PubMed]
Variables | ERAS Group | Non-ERAS Group |
---|---|---|
Pre-operative phase | ||
Preadmission information, education and counselling | Routine | Non-routine |
Pre-operative respiratory function exercise | Routine | Non-routine |
Fasting | Clear fluids allowed up until 2 h before anaesthesia, solids until 6 h before anaesthesia | All night fasting |
Pre-operative nutritional evaluation | Routine | Non-routine |
Intra-operative and post-operative phase | ||
Warming | Routine | Routine |
Analgesia | Regional anaesthesia with intercostal nerve blockage, acetaminophen and NSAIDs combination. Opioid sparing analgesia | Acetaminophen and NSAIDs combination. Non-opioid sparing analgesia |
Fluid management | Euvolemic fluid management | Non-routine |
Early ambulation | Routine (12/24 h after surgery) | Non-routine |
Early catheter removal | Routine | Non-routine |
Early-stage drinking and eating | Routine | Non-routine |
Post-operative respiratory function exercise | Routine, supervised | Non-routine |
Negative pressure suction post-operatively | Routine | Routine |
Variables | Total (n = 86) | ERAS Group (n = 45) | Non-ERAS Group (n = 41) | p-Value |
---|---|---|---|---|
Age (mean ± SD) | 52.6 ± 14.0 | 52.3 ± 13.0 | 53.0 ± 17.0 | 0.30 |
Gender (male), n (%) | 71 (83%) | 38 (84%) | 33 (80%) | 0.63 |
Marginal lymphomas, n (%) | 15 (17.4%) | 7 (15.5%) | 8 (19.5%) | 0.23 |
Follicular lymphoma, n (%) | 12 (13.4%) | 6 (13.3%) | 6 (14.6%) | 0.93 |
Myelomas, n (%) | 15 (17.4%) | 8 (17.8%) | 7 (17.1%) | 0.62 |
Chronic lymphocytic leukemias, n (%) | 21 (24.4%) | 11 (24.4%) | 10 (24.3%) | 0.84 |
Myelodysplasias, n (%) | 7 (8.1%) | 4 (8.9%) | 3 (7.3%) | 0.86 |
MGUS, n (%) | 9 (10.4%) | 4 (8.9%) | 5 (11.9%) | 0.88 |
Kidney transplantation, n (%) | 5 (5.8%) | 3 (6.7%) | 2 (4.9%) | 0.91 |
Repeated hospitalization for infections in the last 3 months before empyema, n (%) | 2 (2.3%) | 2 (4.4%) | 0 | / |
Smokers (yes), n (%) | 81 (94%) | 43 (95%) | 38 (93%) | 0.57 |
BMI, Kg/m2 (mean ± SD): | 23.2 ± 2.0 | 25.0 ± 3.7 | 21.1 ± 5.8 | 0.33 |
Comorbidities, n (%): | ||||
Hypertension | 15 (17%) | 9 (20%) | 6 (15%) | 0.72 |
Diabetes | 42 (49%) | 24 (53%) | 18 (43%) | 0.09 |
COPD | 16 (19%) | 10 (22%) | 6 (14%) | 0.55 |
Cardiac | 10 (12%) | 7 (16%) | 3 (7%) | 0.23 |
Pre-operative laboratory data (mean ± SD): | ||||
Albumin (g/dL) | 3.5 ± 0.9 | 3.6 ± 0.7 | 3.4 ± 0.5 | 0.85 |
Total protein (g/dL) | 6.9 ± 2.8 | 6.9 ± 2.1 | 6.3 ± 2.5 | 0.84 |
White blood cells (/uL) | 16587 ± 1845 | 18360 ± 2352 | 13343 ± 1895 | 0.001 |
Hemoglobin (g/dL) | 12.2 ± 2.8 | 12.4 ± 1.8 | 11.9 ± 3.9 | 0.41 |
Symptoms, n (%): | ||||
Fever | 74 (86%) | 40 (89%) | 34 (83%) | 0.42 |
Cough | 53 (62%) | 29 (65%) | 24 (58%) | 0.57 |
Thoracic pain | 76 (88%) | 40 (89%) | 36 (87%) | 0.87 |
Dyspnea | 85 (98%) | 44 (97%) | 41 (100%) | 0.33 |
Empyema stage II | 48 (56%) | 25 (56%) | 23 (56%) | 0.96 |
Empyema stage III | 38 (44%) | 20 (44%) | 18 (44%) | 0.96 |
Variables | Total (n = 86) | ERAS Group (n = 45) | Non-ERAS Group (n = 41) | p-Value |
---|---|---|---|---|
Operative time, min (mean ± SD) | 95 ± 39 | 86 ± 44 | 106 ± 44 | 0.77 |
Blood loss, mL (mean ± SD) | 261 ± 79 | 255 ± 54 | 285 ± 69 | 0.69 |
Chest drainage, mL daily (mean ± SD) | 117 ± 39 | 103 ± 78 | 157 ± 89 | 0.01 |
Chest tube duration, days (mean ± SD) | 9.7 ± 3.4 | 6.4 ± 2.3 | 13.6 ± 6.8 | <0.001 |
Post-operative length of stay, days (mean ± SD) | 11.8 ± 1.1 | 7.6 ± 1.6 | 16.9 ± 6.9 | <0.001 |
Albumin administration, daily (mean ± SD) | 1.3 ± 0.5 | 0.5 ± 0.1 | 1.8 ± 0.3 | <0.001 |
Need for blood transfusion, n (%) | 0 | 0 | 0 | / |
Post-operative laboratory data(mean ± SD): | ||||
Albumin, g/dL | 3.5 ± 0.9 | 3.9 ± 0.6 | 3.1 ± 0.7 | 0.02 |
Total protein, g/dL | 6.9 ± 2.8 | 6.0 ± 2.1 | 5.5 ± 1.3 | 0.07 |
White blood, cells/uL | 10,958 ± 1148 | 10,247 ± 1245 | 11,587 ± 1735 | 0.43 |
Hemoglobin, g/dL | 10.3 ± 1.7 | 10.5 ± 2.8 | 10.1 ± 3.1 | 0.37 |
VAS score (mean ± SD) | 2.9 ± 1.1 | 2.8 ± 0.9 | 3.1 ± 1.1 | 0.39 |
Complications, n (%): | ||||
Air leaks | 8 (9%) | 1 (2%) | 7 (17%) | 0.01 |
Atelectasis | 15 (17%) | 2 (4%) | 13 (31%) | 0.0009 |
Readmission rate | 0 | 0 | 0 | / |
Further procedures, n (%): | ||||
Reinsertion of chest tube/reintervention | 0 | 0 | 0 | / |
Bronchoscopic aspiration | 0 | 1 (2%) | 12 (29%) | <0.001 |
30-day mortality rate (%) | 0 | 0 | 0 | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leonardi, B.; Sagnelli, C.; Fiorelli, A.; Leone, F.; Mirra, R.; Pica, D.G.; Di Filippo, V.; Capasso, F.; Messina, G.; Vicidomini, G.; et al. Application of ERAS Protocol after VATS Surgery for Chronic Empyema in Immunocompromised Patients. Healthcare 2022, 10, 635. https://doi.org/10.3390/healthcare10040635
Leonardi B, Sagnelli C, Fiorelli A, Leone F, Mirra R, Pica DG, Di Filippo V, Capasso F, Messina G, Vicidomini G, et al. Application of ERAS Protocol after VATS Surgery for Chronic Empyema in Immunocompromised Patients. Healthcare. 2022; 10(4):635. https://doi.org/10.3390/healthcare10040635
Chicago/Turabian StyleLeonardi, Beatrice, Caterina Sagnelli, Alfonso Fiorelli, Francesco Leone, Rosa Mirra, Davide Gerardo Pica, Vincenzo Di Filippo, Francesca Capasso, Gaetana Messina, Giovanni Vicidomini, and et al. 2022. "Application of ERAS Protocol after VATS Surgery for Chronic Empyema in Immunocompromised Patients" Healthcare 10, no. 4: 635. https://doi.org/10.3390/healthcare10040635
APA StyleLeonardi, B., Sagnelli, C., Fiorelli, A., Leone, F., Mirra, R., Pica, D. G., Di Filippo, V., Capasso, F., Messina, G., Vicidomini, G., Sica, A., & Santini, M. (2022). Application of ERAS Protocol after VATS Surgery for Chronic Empyema in Immunocompromised Patients. Healthcare, 10(4), 635. https://doi.org/10.3390/healthcare10040635