The Effects of Sternocleidomastoid Muscle Taping on Postural Control in Healthy Young Adults: A Pilot Crossover Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Tape Application
2.3. Stabilometric Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pollock, A.S.; Durward, B.R.; Rowe, P.J.; Paul, J.P. What is balance? Clin. Rehabil. 2000, 14, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Sibley, K.M.; Beauchamp, M.K.; Van Ooteghem, K.; Paterson, M.; Wittmeier, K.D. Components of Standing Postural Control Evaluated in Pediatric Balance Measures: A Scoping Review. Arch. Phys. Med. Rehabil. 2017, 10, 2066–2078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonnell, M.N.; Hillier, S.L. Vestibular rehabilitation for unilateral peripheral vestibular dysfunction. Cochrane Database Syst. Rev. 2015, 1. [Google Scholar] [CrossRef]
- Cattaneo, D.; Gervasoni, E.; Pupillo, E.; Bianchi, E.; Aprile, I.; Imbimbo, I.; Russo, R.; Cruciani, A.; Turolla, A.; Jonsdottir, J.; et al. Educational and Exercise Intervention to Prevent Falls and Improve Participation in Subjects With Neurological Conditions: The NEUROFALL Randomized Controlled Trial. Front. Neurol. 2019, 10, 865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stubbs, B.; Schofield, P.; Patchay, S.; Leveille, S. Musculoskeletal pain characteristics associated with lower balance confidence in community-dwelling older adults. Physiotherapy 2016, 102, 152–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bisdorff, A.; Bosser, G.; Gueguen, R.; Perrin, P. The epidemiology of vertigo, dizziness, and unsteadiness and its links to co-morbidities. Front. Neurol. 2013, 4, 29. [Google Scholar] [CrossRef] [Green Version]
- Bent, L.R.; Inglis, J.T.; McFadyen, B.J. Vestibular contributions across the execution of a voluntary forward step. Exp. Brain Res. 2002, 143, 100–105. [Google Scholar] [CrossRef]
- Tramontano, M.; Grasso, M.G.; Soldi, S.; Casula, E.P.; BFonnì, S.; Mastrogiacomo, S.; D’Acunto, A.; Porrazzini, F.; Caltagirone, C.; Koch, G. Cerebellar Intermittent Theta-Burst Stimulation Combined with Vestibular Rehabilitation Improves Gait and Balance in Patients with Multiple Sclerosis: A Preliminary Double-Blind Randomized Controlled Trial. Cerebellum 2020, 19, 897–901. [Google Scholar] [CrossRef]
- Forbes, P.A.; Chen, A.; Blouin, J.S. Sensorimotor control of standing balance. Handb. Clin. Neurol. 2018, 159, 61–83. [Google Scholar]
- Kheradmand, A.; Otero-Millan, J. Spatial orientation: Model-based approach to multi-sensory mechanisms. Prog. Brain Res. 2019, 248, 209–223. [Google Scholar]
- Peterka, R.J. Sensory integration for human balance control. Handb. Clin. Neurol. 2018, 159, 27–42. [Google Scholar] [PubMed]
- Bademkiran, F.; Uludag, B.; Guler, A.; Celebisoy, N. The effects of the cerebral, cerebellar and vestibular systems on the head stabilization reflex. Neurol. Sci. 2016, 37, 737–742. [Google Scholar] [CrossRef] [PubMed]
- Rosengren, S.M.; Colebatch, J.G.; Young, A.S.; Govender, S.; Welgampola, M.S. Vestibular evoked myogenic potentials in practice: Methods, pitfalls and clinical applications. Clin. Neurophysiol. Pract. 2019, 4, 47–68. [Google Scholar] [CrossRef] [PubMed]
- Colebatch, J.G.; Rosengren, S.M. Investigating short latency subcortical vestibular projections in humans: What have we learned? J. Neurophysiol. 2019, 122, 2000–2015. [Google Scholar] [CrossRef] [PubMed]
- Colebatch, J.G.; Rothwell, J.C. Motor unit excitability changes mediating vestibulocollic reflexes in the sternocleidomastoid muscle. Clin. Neurophysiol. 2004, 115, 2567–2573. [Google Scholar] [CrossRef]
- Manzari, L.; Koch, G.; Tramontano, M. Selective Asymmetry of Ocular Vestibular-Evoked Myogenic Potential in Patients with Acute Utricular Macula Loss. J. Int. Adv. Otol. 2021, 17, 58–63. [Google Scholar] [CrossRef]
- Forgaard, C.J.; Franks, I.M.; Bennett, K.; Maslovat, D.; Chua, R. Mechanical perturbations can elicit triggered reactions in the absence of a startle response. Exp. Brain Res. 2018, 236, 365–379. [Google Scholar] [CrossRef]
- Ay, S.; Konak, H.E.; Evcik, D.; Kibar, S. The effectiveness of Kinesio Taping on pain and disability in cervical myofascial pain syndrome. Rev. Bras. Reumatol. 2017, 57, 93–99. [Google Scholar] [CrossRef]
- Wu, W.T.; Hong, C.Z.; Chou, L.W. The Kinesio Taping Method for Myofascial Pain Control. Evid.-Based Complementary Altern. Med. 2015, 2015, 950519. [Google Scholar] [CrossRef]
- Fereydounnia, S.; Shadmehr, A.; Attarbashi Moghadam, B.; Talebian Moghadam, S.; Mir, S.M.; Salemi, S.; Pourkazemi, F. Improvements in strength and functional performance after Ki-nesio taping in semi-professional male soccer players with and without functional ankle instability. Foot 2019, 41, 12–18. [Google Scholar] [CrossRef]
- Kim, M.K.; Cha, H.G. The effects of ankle joint taping on gait and balance ability of healthy adults. J. Phys. Ther. Sci. 2015, 27, 2913–2914. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, M.A.; Baldridge, C. The effect of kinesio® tape on vertical jump and dynamic postural control. Int. J. Sports Phys. Ther. 2013, 8, 393–406. [Google Scholar]
- Bae, Y. Change the myofascial pain and range of motion of the temporomandibular joint following kinesio taping of latent myofascial trigger points in the sternocleidomastoid muscle. J. Phys. Ther. Sci. 2014, 26, 1321–1324. [Google Scholar] [CrossRef] [Green Version]
- Tamburella, F.; Scivoletto, G.; Molinari, M. Somatosensory inputs by application of Kine-sioTaping: Effects on spasticity, balance, and gait in chronic spinal cord injury. Front. Hum. Neurosci. 2014, 8, 367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamburella, F.; Scivoletto, G.; Molinari, M. Balance training improves static stability and gait in chronic incomplete spinal cord injury subjects: A pilot study. Eur. J. Phys. Rehabil. Med. 2013, 49, 353–364. [Google Scholar] [PubMed]
- Tamburella, F.; Scivoletto, G.; Iosa, M.; Molinari, M. Reliability, validity, and effectiveness of center of pressure parameters in assessing stabilometric platform in subjects with incomplete spinal cord injury: A serial cross-sectional study. J. Neuroeng. Rehabiltation 2014, 11, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, G.M.; Feinn, R. Using Effect Size-or Why the p Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Cullen, K.E. The vestibular system: Multimodal integration and encoding of self-motion for motor control. Trends Neurosci. 2012, 35, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Sozzi, S.; Nardone, A.; Schieppati, M. Vision Does Not Necessarily Stabilize the Head in Space during Continuous Postural Perturbations. Front. Neurol. 2019, 10, 748. [Google Scholar] [CrossRef] [Green Version]
- Sarlegna, F.R.; Sainburg, R.L. The roles of vision and proprioception in the planning of reaching movements. Adv. Exp. Med. Biol. 2009, 629, 317–335. [Google Scholar]
- Hiengkaew, V.; Panichaporn, W.; Thanungkul, S. Postural balance, visual verticality perception, and its association in individuals with and without neck pain. J. Med. Assoc. Thail. 2014, 97, 70–74. [Google Scholar]
- Zieliński, G.; Matysik-Woźniak, A.; Rapa, M.; Baszczowski, M.; Ginszt, M.; Zawadka, M.; Szkutnik, J.; Rejdak, R.; Gawda, P. The Influence of Visual Input on Electromyographic Patterns of Masticatory and Cervical Spine Muscles in Subjects with Myopia. J. Clin. Med. 2021, 10, 5376. [Google Scholar] [CrossRef] [PubMed]
- Paillard, T.; Noé, F. Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects. BioMed Res. Int. 2015, 2015, 891390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzari, L.; Graziano, D.; Tramontano, M. The Different Stages of Vestibular Neuritis from the Point of View of the Video Head Impulse Test. Audiol. Res. 2020, 10, 31–38. [Google Scholar] [CrossRef] [PubMed]
Participant ID | Age (yrs) | Gender | Height (cm) | Weight (kg) | Foot Size (mm) | BMI | Refractive Deficit * |
---|---|---|---|---|---|---|---|
1 | 27 | F | 169 | 80 | 257 | 28.01 | no |
2 | 24 | F | 170 | 65 | 266 | 22.49 | no |
3 | 20 | F | 158 | 52 | 253 | 20.83 | no |
4 | 20 | F | 170 | 55 | 266 | 19.03 | M/A |
5 | 22 | M | 180 | 80 | 292 | 24.69 | M |
6 | 22 | F | 179 | 77 | 266 | 24.03 | A |
7 | 26 | M | 170 | 64 | 288 | 22.15 | M/A |
8 | 25 | F | 160 | 48 | 244 | 18.75 | no |
9 | 27 | F | 175 | 85 | 275 | 27.76 | no |
10 | 24 | F | 165 | 58 | 253 | 21.30 | no |
11 | 29 | F | 170 | 69 | 266 | 23.88 | M/A |
12 | 23 | M | 176 | 80 | 292 | 25.83 | no |
13 | 29 | M | 170 | 62 | 275 | 21.45 | no |
Mean ± SD | 24.46 ± 3.04 | 69.23 (F) | 170 ± 7 | 67.31 ± 12.19 | 268.69 ± 15.29 | 23.09 ± 2.96 | 61.54% (No) |
Parameter | Left Tape | Right Tape | Bilateral Tape | Without Tape | Friedman Test | Post-Hoc | Post-Hoc | Post-Hoc |
---|---|---|---|---|---|---|---|---|
Open Eyes | ||||||||
L-SCM-KT | R-SCM-KT | B-SCM-KT | NO-KT | p-Value | NO-KT vs. | NO-KT vs. | NO-KT vs. | |
L-SCM-KT | R-SCM-KT | B-SCM-KT | ||||||
Length of CoP | 1104.58 ± 361.2 * | 1100.50 ± 392.5 * | 1125.79 ± 351.6 * | 846.86 ± 312.9 * | <0.0001 | 0.05 | 0.003 | <0.0001 |
Ellipse | 57.31 ± 46.1 | 130.19 ± 162 | 96.22 ± 148.1 | 101.86 ± 90.7 | 0.2 | - | - | - |
X mm | 7.84 ± 38.3 | −7.05 ± 10.5 | −6.29 ± 8.4 | −11.13 ± 8.28 | 0.06 | - | - | - |
Y mm | −10.50 ± 20.4 | −12.17 ± 18.2 | −7.73 ± 17.4 | −9.73 ± 17.7 | 0.7 | - | - | - |
Os. max (mm) | 3.25 ± 1.4 * | 3.84 ± 3.9 * | 2.97 ± 0.9 * | 2.25 ± 0.6 * | 0.004 | 0.01 | 0.03 | 0.01 |
Os. min (mm) | 0.02 | 0.02 | 0.03 | 0.02 | 0.06 | - | - | - |
RMS mm | 0.98 ± 0.3 * | 0.99 ± 0.4 * | 1 ± 0.3 * | 0.75 ± 0.3 * | <0.0001 | 0.002 | 0.002 | <0.0001 |
RMS X mm | 0.54 ± 0.2 | 0.62 ± 0.4 | 0.60 ± 0.3 * | 0.48 ± 0.2 * | 0.03 | - | - | 0.02 |
RMS Y mm | 0.80 ± 0.3 * | 0.74 ± 0.2 * | 0.77 ± 0.2 * | 0.57 ± 0.2 * | <0.0001 | 0.001 | 0.007 | <0.0001 |
Weight L | 52.85 ± 4.4 * | 53.08 ± 4.7 * | 52.54 ± 4.6 * | 55.08 ± 4.7 * | 0.01 | - | - | 0.03 |
Weight R | 47.15 ± 4.4 * | 46.92 ± 4.7 | 47.46 ± 4.6 * | 44.92 ± 4.7 * | 0.006 | 0.04 | - | 0.01 |
Closed Eyes | ||||||||
L-SCM-KT | R-SCM-KT | B-SCM-KT | NO-KT | p-Value | NO-KT vs. | NO-KT vs. | NO-KT vs. | |
L-SCM-KT | R-SCM-KT | B-SCM-KT | ||||||
Length of CoP | 1158.16 ± 370.9 | 1118.31 ± 383 | 1162.35 ± 392 * | 923.92 ± 234.7 * | 0.03 | - | - | 0.04 |
Ellipse | 54.23 ± 60.39 | 160.73 ± 214.44 | 48.92 ± 40.2 | 50.90 ± 58.1 | 0.4 | - | - | - |
X mm | 12.92 ± 62.14 | −6.08 ± 9 | −6.72 ± 8 | −9.30 ± 6.6 | 0.1 | - | - | - |
Y mm | −8.12 ± 17.1 | −10.50 ± 17 | −8.34 ± 18.6 | −9.26 ± 18.7 | 0.7 | - | - | - |
Os. max (mm) | 3.57 ± 1.8 | 3.22 ± 1.3 | 3.36 ± 1.4 | 3.36 ± 2 | 0.5 | - | - | - |
Os. min (mm) | 0.03 | 0.02 | 0.02 | 0.03 | 0.10 | - | - | - |
RMS mm | 1.03 ± 0.3 | 0.99 ± 0.3 | 0.95 ± 0.4 * | 0.81 ± 0.2 * | 0.01 | - | - | 0.01 |
RMS X mm | 0.61 ± 0.3 | 0.60 ± 0.3 | 0.57 ± 0.2 | 0.50 ± 0.2 | 0.8 | - | - | - |
RMS Y mm | 0.80 ± 0.2 | 0.76 ± 0.2 | 1.82 ± 1.1 * | 0.62 ± 0.2 * | <0.0001 | - | - | <0.0001 |
Weight L | 52.15 ± 4.4 | 51.61 ± 4.6 | 52.46 ± 4.5 * | 54.31 ± 4.1 * | 0.02 | - | - | 0.03 |
Weight R | 47.85 ± 4.4 | 47.38 ± 4.6 | 47.54 ± 4.5 * | 45.69 ± 4.1 * | 0.02 | - | - | 0.04 |
Parameter | Open Eyes | Closed Eyes | ||||
---|---|---|---|---|---|---|
NO-KT vs. | NO-KT vs. | NO-KT vs. | NO-KT vs. | NO-KT vs. | NO-KT vs. | |
L-SCM-KT | R-SCM-KT | B-SCM-KT | L-SCM-KT | R-SCM-KT | B-SCM-KT | |
Length of CoP | 0.76 | 0.71 | 0.83 | 0.75 | 0.61 | 0.73 |
Os. max (mm) | 0.92 | 0.56 | 0.94 | - | - | - |
RMS mm | 0.76 | 0.67 | 0.83 | 0.86 | 0.7 | 0.44 |
RMS X mm | 0.3 | 0.44 | 0.47 | - | - | - |
RMS Y mm | 0.9 | 0.85 | 1 | 0.9 | 0.7 | 1.51 |
Weight L | 0.48 | 0.42 | 0.54 | 0.5 | 0.61 | 0.42 |
Weight R | 0.48 | 0.42 | 0.54 | 0.5 | 0.61 | 0.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martino Cinnera, A.; Princi, A.A.; Leone, E.; Marrano, S.; Pucello, A.; Paolucci, S.; Iosa, M.; Morone, G. The Effects of Sternocleidomastoid Muscle Taping on Postural Control in Healthy Young Adults: A Pilot Crossover Study. Healthcare 2022, 10, 946. https://doi.org/10.3390/healthcare10050946
Martino Cinnera A, Princi AA, Leone E, Marrano S, Pucello A, Paolucci S, Iosa M, Morone G. The Effects of Sternocleidomastoid Muscle Taping on Postural Control in Healthy Young Adults: A Pilot Crossover Study. Healthcare. 2022; 10(5):946. https://doi.org/10.3390/healthcare10050946
Chicago/Turabian StyleMartino Cinnera, Alex, Alessandro Antonio Princi, Enza Leone, Serena Marrano, Alessandra Pucello, Stefano Paolucci, Marco Iosa, and Giovanni Morone. 2022. "The Effects of Sternocleidomastoid Muscle Taping on Postural Control in Healthy Young Adults: A Pilot Crossover Study" Healthcare 10, no. 5: 946. https://doi.org/10.3390/healthcare10050946
APA StyleMartino Cinnera, A., Princi, A. A., Leone, E., Marrano, S., Pucello, A., Paolucci, S., Iosa, M., & Morone, G. (2022). The Effects of Sternocleidomastoid Muscle Taping on Postural Control in Healthy Young Adults: A Pilot Crossover Study. Healthcare, 10(5), 946. https://doi.org/10.3390/healthcare10050946