Chronic Kidney Disease in a Large National Human Immunodeficiency Virus Treatment Program
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Exposure
2.3. Outcomes
2.4. Variables
2.5. Statistical Analyses
3. Results
3.1. Study Population and Follow-Up
3.2. Incidence of CKD
3.3. Association between First-Line Antiretroviral Treatment Regimen and Chronic Kidney Disease
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Lond. Engl. 2020, 395, 709–733. [Google Scholar] [CrossRef] [Green Version]
- Calza, L.; Sachs, M.; Colangeli, V.; Borderi, M.; Granozzi, B.; Malosso, P.; Comai, G.; Corradetti, V.; La Manna, G.; Viale, P. Prevalence of chronic kidney disease among HIV-1-infected patients receiving a combination antiretroviral therapy. Clin. Exp. Nephrol. 2019, 23, 1272–1279. [Google Scholar] [CrossRef] [PubMed]
- Vassalotti, J.A.; Winston, J.A. CKD in HIV-infected patients: From the new plague to chronic care management. Am. J. Kidney Dis. 2015, 65, 823–825. [Google Scholar] [CrossRef] [PubMed]
- Winston, J.A. HIV and CKD epidemiology. Adv. Chronic Kidney Dis. 2010, 17, 19–25. [Google Scholar] [CrossRef]
- Ekrikpo, U.E.; Kengne, A.P.; Bello, A.K.; Effa, E.E.; Noubiap, J.J.; Salako, B.L.; Rayner, B.L.; Remuzzi, G.; Okpechi, I.G. Chronic kidney disease in the global adult HIV-infected population: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0195443. [Google Scholar] [CrossRef] [Green Version]
- Fernando, S.K.; Finkelstein, F.O.; Moore, B.; Weissman, S. Prevalence of chronic kidney disease in an urban HIV infected population. Am. J. Med. Sci. 2008, 335, 89–94. [Google Scholar] [CrossRef]
- Liegeon, G.; Harrison, L.; Nechba, A.; Halue, G.; Banchongkit, S.; Nilmanat, A.; Yutthakasemsunt, N.; Pathipvanich, P.; Thongpaen, S.; Lertkoonalak, R.; et al. Long term renal function in Asian HIV-1 infected adults receiving tenofovir disoproxil fumarate without protease inhibitors. J. Infect. 2019, 79, 454–461. [Google Scholar] [CrossRef]
- Rossi, C.; Raboud, J.; Walmsley, S.; Cooper, C.; Antoniou, T.; Burchell, A.N.; Hull, M.; Chia, J.; Hogg, R.S.; Moodie, E.E.M.; et al. Hepatitis C co-infection is associated with an increased risk of incident chronic kidney disease in HIV-infected patients initiating combination antiretroviral therapy. BMC Infect. Dis. 2017, 17, 246. [Google Scholar] [CrossRef]
- Swanepoel, C.R.; Atta, M.G.; D’Agati, V.D.; Estrella, M.M.; Fogo, A.B.; Naicker, S.; Post, F.A.; Wearne, N.; Winkler, C.A.; Cheung, M.; et al. Kidney disease in the setting of HIV infection: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2018, 93, 545–559. [Google Scholar] [CrossRef] [Green Version]
- Chaivooth, S.; Bhakeecheep, S.; Ruxrungtham, K.; Teeraananchai, S.; Kerr, S.; Teeraratkul, A.; Sirinirund, P.; Ongwandee, S.; Avihingsanon, A.; Benjarattanaporn, P.; et al. The challenges of ending AIDS in Asia: Outcomes of the Thai National AIDS Universal Coverage Programme, 2000–2014. J. Virus Erad. 2017, 3, 192–199. [Google Scholar] [CrossRef]
- World Health Organization. Update of Recommendations on First- and Second-Line Antiretroviral Regimens. Available online: https://www.who.int/hiv/pub/arv/arv-update-2019-policy/en/ (accessed on 20 January 2019).
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The International Classification of Diseases and Related Health Problems 10th Revision, Version for 2010. Available online: http://apps.who.int/classifications/icd10/browse/2010/en (accessed on 20 January 2019).
- Levin, A.S.; Bilous, R.W.; Coresh, J. Chapter 1: Definition and classification of CKD. Kidney Int. Suppl. 2013, 3, 19–62. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association Standards of Medical Care in Diabetes—2013. Diabetes Care 2013, 36, S11–S66. [CrossRef] [PubMed] [Green Version]
- Jellinger, P.S.; Smith, D.A.; Mehta, A.E.; Ganda, O.; Handelsman, Y.; Rodbard, H.W.; Shepherd, M.D.; Seibel, J.A. AACE task force for management of dyslipidemia and prevention of atherosclerosis American association of clinical endocrinolo-gists’ guidelines for management of dyslipidemia and prevention of atherosclerosis. Endocr. Pract. 2012, 18, 1–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Writing Group Members; Roger, V.L.; Go, A.S.; Lloyd-Jones, D.M.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; et al. Heart disease and stroke statistics—2012 update: A report from the American heart association. Circulation 2012, 125, e2–e220. [Google Scholar] [CrossRef] [PubMed]
- Royston, P.; White, I.R. Multiple imputation by chained equation (MICE): Implementation in stata. J. Stat. Softw. 2011, 45. [Google Scholar] [CrossRef] [Green Version]
- Loader, C. Local Regression and Likelihood; Statistics and Computing; Springer: New York, NY, USA, 1999; ISBN 978-0-387-98775-0. [Google Scholar]
- Lim, H.J.; Zhang, X.; Dyck, R.; Osgood, N. Methods of competing risks analysis of end-stage renal disease and mortality among people with diabetes. BMC Med. Res. Methodol. 2010, 10, 97. [Google Scholar] [CrossRef] [Green Version]
- Fine, J.P.; Ray, M. A proportional hazards model for the subdistribution of a competing risk. J. Am. Stat. Assoc. 1999, 94, 496–509. [Google Scholar] [CrossRef]
- Hsieh, M.-H.; Lu, P.-L.; Kuo, M.-C.; Lin, W.-R.; Lin, C.-Y.; Lai, C.-C.; Tsai, J.-J.; Chen, T.-C.; Hwang, S.-J.; Chen, Y.-H. Prevalence of and associated factors with chronic kidney disease in human immunodeficiency virus-infected patients in Taiwan. J. Microbiol. Immunol. Infect. 2015, 48, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Aekplakorn, W.; Bunnag, P.; Woodward, M.; Sritara, P.; Cheepudomwit, S.; Yamwong, S.; Yipintsoi, T.; Rajatanavin, R. A risk score for predicting incident diabetes in the Thai population. Diabetes Care 2006, 29, 1872–1877. [Google Scholar] [CrossRef] [Green Version]
- Jiamjarasrangsi, W.; Aekplakorn, W. Incidence and predictors of type 2 diabetes among professional and office workers in Bangkok, Thailand. J. Med. Assoc. Thai. 2005, 88, 1896–1904. [Google Scholar] [PubMed]
- Jiamjarasrangsi, W.; Lohsoonthorn, V.; Lertmaharit, S.; Sangwatanaroj, S. Incidence and predictors of abnormal fasting plasma glucose among the university hospital employees in Thailand. Diabetes Res. Clin. Pract. 2008, 79, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Mocroft, A.; Lundgren, J.D.; Ross, M.; Fux, C.A.; Reiss, P.; Moranne, O.; Morlat, P.; Monforte, A.D.; Kirk, O.; Ryom, L. Cumulative and current exposure to potentially nephrotoxic antiretrovirals and development of chronic kidney disease in HIV-positive individuals with a normal baseline estimated glomerular filtration rate: A prospective international cohort study. Lancet HIV 2015, 3, e23–e32. [Google Scholar] [CrossRef]
- Pongpirul, W.; Pongpirul, K.; Ananworanich, J.; Klinbuayaem, V.; Avihingsanon, A.; Prasithsirikul, W. Chronic kidney disease incidence and survival of Thai HIV-infected patients. AIDS Lond. Engl. 2018, 32, 393–398. [Google Scholar] [CrossRef]
- Suzuki, S.; Nishijima, T.; Kawasaki, Y.; Kurosawa, T.; Mutoh, Y.; Kikuchi, Y.; Gatanaga, H.; Oka, S. Effect of tenofovir disoproxil fumarate on incidence of chronic kidney disease and rate of estimated glomerular filtration rate decrement in HIV-1–Infected treatment-Naïve Asian patients: Results from 12-year observational cohort. AIDS Patient Care STDs 2017, 31, 105–112. [Google Scholar] [CrossRef]
- Achhra, A.C.; Mocroft, A.; Ross, M.J.; Ryom, L.; Lucas, G.M.; Furrer, H.; Neuhaus, J.; Somboonwit, C.; Kelly, M.; Gatell, J.M.; et al. Kidney disease in antiretroviral-naïve HIV-positive adults with high CD4 counts: Prevalence and predictors of kidney disease at enrolment in the INSIGHT Strategic Timing of AntiRetroviral Treatment (START) trial. HIV Med. 2015, 16, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Lapadula, G.; Bernasconi, D.P.; Casari, S.; Maggiolo, F.; Cauda, R.; Di Pietro, M.; Ladisa, N.; Sighinolfi, L.; Zoppo, S.D.; Sabbatini, F.; et al. Risk of chronic kidney disease among patients developing mild renal impairment during Tenofovir-Containing antiretroviral treatment. PLoS ONE 2016, 11, e0162320. [Google Scholar] [CrossRef] [Green Version]
- Kalyesubula, R.; Nankabirwa, J.I.; Ssinabulya, I.; Siddharthan, T.; Kayima, J.; Nakibuuka, J.; Salata, R.A.; Mondo, C.; Kamya, M.R.; Hricik, D. Kidney disease in Uganda: A community based study. BMC Nephrol. 2017, 18, 116. [Google Scholar] [CrossRef] [Green Version]
- Si, J.; Yu, C.; Guo, Y.; Bian, Z.; Qin, C.; Yang, L.; Chen, Y.; Yin, L.; Li, H.; Lan, J.; et al. Chronic hepatitis B virus infection and risk of chronic kidney disease: A population-based prospective cohort study of 0.5 million Chinese adults. BMC Med. 2018, 16, 93. [Google Scholar] [CrossRef] [Green Version]
- Fabrizi, F.; Cerutti, R.; Ridruejo, E. Hepatitis B virus infection as a risk factor for chronic kidney disease. Expert Rev. Clin. Pharmacol. 2019, 12, 867–874. [Google Scholar] [CrossRef]
- Rwegerera, G.; Bayani, M.; Taolo, E.; Habte, D. The prevalence of chronic kidney disease and associated factors among patients admitted at princess marina hospital, Gaborone, Botswana. Niger. J. Clin. Pract. 2017, 20, 313–319. [Google Scholar] [CrossRef] [PubMed]
- de Waal, R.; Cohen, K.; Fox, M.P.; Stinson, K.; Maartens, G.; Boulle, A.; Igumbor, E.; Davies, M.-A. Changes in estimated glomerular filtration rate over time in South African HIV-1-infected patients receiving tenofovir: A retrospective cohort study. J. Int. AIDS Soc. 2017, 20, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mocroft, A.; Kirk, O.; Gatell, J.; Reiss, P.; Gargalianos, P.; Zilmer, K.; Beniowski, M.; Viard, J.-P.; Staszewski, S.; Lundgren, J. Chronic renal failure among HIV-1-Infected patients. AIDS Lond. Engl. 2007, 21, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Scherzer, R.; Gandhi, M.; Estrella, M.M.; Tien, P.C.; Deeks, S.; Grunfeld, C.; Peralta, C.A.; Shlipak, M.G. A chronic kidney disease risk score to determine tenofovir safety in a prospective cohort of HIV-positive male veterans. AIDS 2014, 28, 1289–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flandre, P.; Pugliese, P.; Cuzin, L.; Bagnis, C.I.; Tack, I.; Cabié, A.; Poizot-Martin, I.; Katlama, C.; Brunet-François, C.; Yazdanpanah, Y.; et al. Risk factors of chronic kidney disease in HIV-infected patients. Clin. J. Am. Soc. Nephrol. 2011, 6, 1700–1707. [Google Scholar] [CrossRef] [Green Version]
- Ambetsa, M.O.; Makori, J.O.; Osanjo, G.O.; Oluka, M.; Maitai, C.K.; Guantai, A.N.; McClelland, S.; Okalebo, F.A. Incidence and Risk Factors of Renal Dysfunction in Patients on Nevirapine-Based Regimens at a Referral Hospital in Kenya. Afr. J. Pharmacol. Ther. 2015, 4, 48–58. [Google Scholar]
- Manosuthi, W.; Mankatitham, W.; Lueangniyomkul, A.; Prasithsirikul, W.; Tantanathip, P.; Suntisuklappon, B.; Narkksoksung, A.; Nilkamhang, S.; Sungkanuparph, S. Renal impairment after switching from stavudine/lamivudine to tenofovir/lamivudine in NNRTI-Based antiretroviral regimens. AIDS Res. Ther. 2010, 7, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cressey, T.R.; Avihingsanon, A.; Halue, G.; Leenasirimakul, P.; Sukrakanchana, P.-O.; Tawon, Y.; Jaisieng, N.; Jourdain, G.; Podany, A.T.; Fletcher, C.V.; et al. Plasma and intracellular pharmacokinetics of tenofovir disoproxil fumarate 300 mg every 48 hours vs 150 mg once daily in HIV-Infected adults with moderate renal function impairment. Clin. Infect. Dis. Publ. Infect. Dis. Soc. Am. 2015, 61, 633–639. [Google Scholar] [CrossRef] [Green Version]
- LaFleur, J.; Bress, A.P.; Esker, S.; Knippenberg, K.; Crook, J.; Nyman, H.; Bedimo, R.; Tebas, P.; Rosenblatt, L. Brief report: Tenofovir-Associated nephrotoxicity among a US national historical cohort of HIV-Infected veterans: Risk modification by concomitant antiretrovirals. J. Acquir. Immune Defic. Syndr. 2018, 77, 325–330. [Google Scholar] [CrossRef]
Baseline Characteristics | Antiretroviral Therapy Regimens | |||||
---|---|---|---|---|---|---|
AZT + 3TC + NVP | AZT + 3TC + EFV | TDF + 3TC + NVP | TDF + 3TC/FTC + EFV | TDF + 3TC + LPV/r | Overall | |
(n = 12,084) | (n = 6519) | (n = 888) | (n = 7351) | (n = 471) | (n = 27,313) | |
Fiscal year of antiretroviral initiation | ||||||
2007 | 757 (6.3%) | 515 (7.9%) | 59 (6.6%) | 165 (2.2%) | 27 (5.7%) | 1523 (5.6%) |
2008 | 823 (6.8%) | 477 (7.3%) | 55 (6.2%) | 228 (3.1%) | 39 (8.3%) | 1622 (6.0%) |
2009 | 901 (7.5%) | 588 (9.0%) | 78 (8.8%) | 358 (4.9%) | 46 (9.8%) | 1971 (7.2%) |
2010 | 1193 (9.9%) | 726 (11.1%) | 93 (10.5%) | 667 (9.1%) | 54 (11.5%) | 2733 (10.0%) |
2011 | 2656 (22.0%) | 1295 (19.9%) | 190 (21.4%) | 1484 (20.2%) | 88 (18.7%) | 5713 (20.9%) |
2012 | 2639 (21.8%) | 1395 (21.4%) | 203 (22.9%) | 1901 (25.9%) | 107 (22.7%) | 6245 (22.9%) |
2013 | 3115 (25.8%) | 1523 (23.4%) | 210 (23.7%) | 2548 (34.7%) | 110 (23.4%) | 7506 (27.5%) |
Male sex, n (%) | 6014 (49.8%) | 3959 (60.7%) | 463 (52.1%) | 4709 (64.1%) | 244 (51.8%) | 15,389 (56.3%) |
Age–years | ||||||
median (IQR) | 36.9 (30.8–43.4) | 37.1 (31.5–43.3) | 37.4 (31.8–44.3) | 36.3 (30.1–43.2) | 36.4 (30.9–43.1) | 36.8 (30.8–43.3) |
n (%) | ||||||
18–34 | 4780 (39.6%) | 2448 (37.6%) | 322 (36.3%) | 3048 (41.5%) | 191 (40.6%) | 10,789 (39.5%) |
35–44 | 4676 (38.7%) | 2668 (40.9%) | 349 (39.3%) | 2707 (36.8%) | 185 (39.3%) | 10,585 (38.8%) |
45–59 | 2378 (19.7%) | 1274 (19.5%) | 189 (21.3%) | 1429 (19.4%) | 80 (17.0%) | 5350 (19.6%) |
≥60 | 250 (2.1%) | 129 (2.0%) | 28 (3.2%) | 167 (2.3%) | 15 (3.2%) | 589 (2.2%) |
History of comorbidities, n (%) | ||||||
Type 2 diabetes | 230 (1.9%) | 120 (1.8%) | 12 (1.4%) | 147 (2.0%) | 12 (2.6%) | 521 (1.9%) |
Hypertension | 459 (3.8%) | 255 (3.9%) | 39 (4.4%) | 307 (4.2%) | 14 (3.0%) | 1074 (3.9%) |
Ischemic heart disease | 53 (0.4%) | 33 (0.5%) | 2 (0.2%) | 61 (0.8%) | 2 (0.4%) | 151 (0.6%) |
Tubulo-interstitial nephritis | 258 (2.1%) | 120 (1.8%) | 16 (1.8%) | 127 (1.7%) | 6 (1.3%) | 527 (1.9%) |
Gout | 42 (0.4%) | 21 (0.3%) | 5 (0.6%) | 31 (0.4%) | 1 (0.2%) | 100 (0.4%) |
Urolithiasis | 78 (0.7%) | 35 (0.5%) | 3 (0.3%) | 51 (0.7%) | 3 (0.6%) | 170 (0.6%) |
Hepatitis B infection | 92 (0.8%) | 84 (1.3%) | 69 (7.8%) | 756 (10.3%) | 33 (7.0%) | 1034 (3.8%) |
Hepatitis C infection | 71 (0.6%) | 128 (2.0%) | 13 (1.5%) | 252 (3.4%) | 15 (3.2%) | 479 (1.8%) |
Baseline absolute CD4 cell count-cells/mm3 (n = 17,662) | ||||||
Median (IQR) | 146 (49–244) | 123 (39–250) | 95 (33–248) | 115 (37–253) | 220 (65–399) | 146 (49–244) |
n (%) | 8524 | 4194 | 454 | 4300 | 190 | 17,662 |
<200 | 5470 (64.2%) | 308 (67.8%) | 308 (67.8%) | 2798 (65.1%) | 89 (46.8%) | 11,403 (64.6%) |
≥200 | 3054 (35.8%) | 1456 (34.7%) | 146 (32.2%) | 1502 (34.9%) | 101 (53.2%) | 6259 (35.4%) |
Variables with ≥20% missing values | ||||||
Body mass index kg/m2 (n = 9266) | ||||||
Median (IQR) | 20.8 (18.8–22.8) | 20.0 (18.2–22.2) | 20.6 (18.8–23.4) | 20.2 (18.2–22.4) | 20.4 (18.8–22.8) | 20.4 (18.6–22.6) |
n (%) | 4528 (48.9%) | 1916 (20.7%) | 371 (4.0%) | 2320 (25.0%) | 131 (1.4%) | 9266 |
<18.5 | 968 (21.1%) | 1014 (52.9%) | 174 (46.9%) | 1180 (50.9%) | 74 (56.5%) | 2295 (24.8%) |
18.5–22.9 | 2451 (54.1%) | 549 (28.7%) | 89 (24.0%) | 662 (28.5%) | 27 (20.6%) | 4893 (52.8%) |
23.0–24.9 | 557 (12.7%) | 187 (9.8%) | 53 (14.3%) | 251 (10.8%) | 18 (13.7%) | 1086 (11.7%) |
≥25.0 | 532 (11.8%) | 166 (8.7%) | 55 (14.8%) | 227 (9.8%) | 12 (9.2%) | 992 (10.7%) |
Baseline serum creatinine-mg/dL (n = 8524) | ||||||
Median (IQR) | 0.90 (0.70–1.00) | 0.85 (0.70–1.00) | 0.83 (0.75–1.00) | 0.86 (0.70–1.00) | 0.79 (0.70–0.96) | 0.82 (0.70–1.00) |
Hyperlipidemia (n = 4868), n (%) | 503 (21.6%) | 231 (20.4%) | 23 (17.3%) | 203 (16.7%) | 20 (35.1%) | 980 (20.1%) |
Number of Patients with CKD | PYFU | Incidence Per 1000 PYFU (95% CI) | |
---|---|---|---|
Overall | 245 | 76,168 | 3.2 (2.8–3.6) |
Fiscal year of antiretroviral initiation | |||
2007 | 13 | 8846 | 1.4 (0.9–2.5) |
2008 | 13 | 8366 | 1.6 (0.9–2.7) |
2009 | 29 | 8660 | 3.3 (2.3–4.8) |
2010 | 29 | 9908 | 2.9 (2.0–4.2) |
2011 | 72 | 16,682 | 4.3 (3.4–5.4) |
2012 | 51 | 13,435 | 3.8 (2.9–5.0) |
2013 | 38 | 10,272 | 3.7 (2.7–5.1) |
Characteristics | |||
Sex | |||
Female | 111 | 35,757 | 3.1 (2.6–3.7) |
Male | 134 | 40,410 | 3.3 (2.8–3.9) |
Age–years | |||
18–34 | 17 | 30,800 | 0.6 (0.3–0.9) |
35–44 | 55 | 29,961 | 1.8 (1.4–2.4) |
45–59 | 117 | 13,990 | 8.4 (7.0–10.0) |
≥60 | 56 | 1416 | 39.5 (30.4–51.4) |
History of comorbidities | |||
Type 2 diabetes | |||
No | 217 | 75,068 | 2.9 (2.5–3.3) |
Yes | 28 | 1100 | 25.5 (17.6–36.9) |
Hypertension | |||
No | 205 | 73,942 | 2.8 (2.4–3.2) |
Yes | 40 | 2226 | 18.0 (13.2–24.5) |
Ischemic heart disease | |||
No | 242 | 75,867 | 3.2 (2.8–3.6) |
Yes | 3 | 301 | 10.0 (3.2–30.9) |
Tubulo-interstitial nephritis | |||
No | 234 | 74,961 | 3.1 (2.7–3.5) |
Yes | 11 | 1208 | 9.1 (5.0–16.4) |
Gout | |||
No | 240 | 75,983 | 3.2 (2.8–3.6) |
Yes | 5 | 186 | 26.9 (11.2–64.7) |
Urolithiasis | |||
No | 237 | 75,823 | 3.1 (2.8–3.6) |
Yes | 8 | 346 | 23.1 (11.6–46.3) |
Hepatitis B infection | |||
No | 234 | 73,931 | 3.2 (2.8–3.6) |
Yes | 11 | 2237 | 4.9 (2.7–8.9) |
Hepatitis C infection | |||
No | 236 | 75,115 | 3.1 (2.8–3.6) |
Yes | 9 | 1054 | 8.5 (4.4–16.4) |
Baseline absolute CD4 cell count-cells/mm3 | |||
<200 | 99 | 27,084 | 3.7 (3.0–4.5) |
≥200 | 58 | 15,771 | 3.7 (2.8–4.8) |
First-line antiretroviral regimens | |||
AZT + 3TC + NVP | 79 | 34,130 | 2.3 (1.9–2.9) |
AZT + 3TC + EFV | 46 | 19,105 | 2.4 (1.8–3.2) |
TDF + 3TC/FTC + EFV | 80 | 18,889 | 4.2 (3.4–5.3) |
TDF + 3TC + NVP | 23 | 2599 | 8.8 (5.9–13.3) |
TDF + 3TC + LPV/r | 17 | 1445 | 11.8 (7.3–18.9) |
Variables | Univariable a | Multivariable a | ||
---|---|---|---|---|
SHR (95% CI) | p-Value | aSHR (95% CI) | p-Value | |
Fiscal year of antiretroviral initiation | ||||
2007 | reference | |||
2008 | 1.0 (0.5–2.2) | 0.993 | ||
2009 | 1.7 (0.9–3.3) | 0.133 | ||
2010 | 0.9 (0.4–2.0) | 0.813 | ||
2011 | 1.5 (0.8–2.8) | 0.217 | ||
2012 | 1.1 (0.6–2.1) | 0.827 | ||
2013 | 0.8 (0.4–1.7) | 0.565 | ||
Male sex | 0.9 (0.6–1.4) | 0.662 | 0.9 (0.6–1.5) | 0.779 |
Age–years | ||||
18–34 | reference | reference | ||
35–44 | 3.1 (1.8–5.4) | <0.001 | 2.9 (1.7–5.1) | <0.001 |
45–59 | 13.5 (8.1–22.5) | <0.001 | 11.6 (6.9–19.6) | <0.001 |
≥60 | 64.6 (37.4–111.6) | <0.001 | 47.6 (26.5–85.5) | <0.001 |
Baseline history of comorbidities | ||||
Type 2 diabetes | 6.6 (4.4–9.9) | <0.001 | 2.8 (1.7–4.5) | <0.001 |
Hypertension | 4.9 (3.5–7.0) | <0.001 | 1.4 (0.9–2.1) | 0.153 |
Ischemic heart disease | 2.5 (0.8–7.7) | 0.117 | ||
Tubulo-interstitial nephritis | 2.4 (1.3–4.5) | 0.004 | ||
Gout | 6.4 (2.6–15.7) | <0.001 | 2.8 (1.1–7.0) | 0.029 |
Urolithiasis | 6.2 (3.0–12.8) | <0.001 | 3.6 (1.7–7.8) | 0.001 |
Hepatitis B infection | 0.6 (0.2–1.8) | 0.391 | ||
Hepatitis C infection | 2.1 (0.8–5.5) | 0.127 | ||
Baseline absolute CD4 cell count <200 cells/mm3 | 0.9 (0.7–1.3) | 0.572 | ||
First-line antiretroviral regimens | ||||
AZT + 3TC + NVP | reference | reference | ||
AZT + 3TC + EFV | 1.1 (0.7–1.5) | 0.712 | 1.0 (0.7–1.5) | 0.973 |
TDF + 3TC/FTC + EFV | 1.7 (1.2–2.3) | 0.002 | 1.6 (1.2–2.3) | 0.003 |
TDF + 3TC + NVP | 4.1 (2.6–6.6) | <0.001 | 3.8 (2.3–6.0) | <0.001 |
TDF + 3TC + LPV/r | 6.0 (3.5–10.2) | <0.001 | 6.5 (3.9–11.1) | <0.001 |
Time-updated absolute CD4 cell count <200 cells/mm3 (n = 27,056) | 2.1 (1.6–2.8) | <0.001 | 2.2 (1.7–2.9) | <0.001 |
Variables with ≥20% missing values | ||||
Baseline body mass index-kg/m2 (n = 9266) | ||||
<18.5 | 1.5 (0.9–2.5) | 0.116 | ||
18.5–22.9 | reference | |||
23.0–24.9 | 0.9 (0.4–2.0) | 0.883 | ||
≥25.0 | 1.0 (0.5–2.2) | 0.960 | ||
Time-updated HIV-1 RNA load ≥1000 copies/mL (n = 27,056) | 1.3 (0.8–2.1) | 0.303 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paengsai, N.; Noppakun, K.; Jourdain, G.; Cressey, T.R.; Salvadori, N.; Chaiwarith, R.; Tantraworasin, A.; Mary, J.Y.; Bowonwatanuwong, C.; Bhakeecheep, S.; et al. Chronic Kidney Disease in a Large National Human Immunodeficiency Virus Treatment Program. Healthcare 2022, 10, 1490. https://doi.org/10.3390/healthcare10081490
Paengsai N, Noppakun K, Jourdain G, Cressey TR, Salvadori N, Chaiwarith R, Tantraworasin A, Mary JY, Bowonwatanuwong C, Bhakeecheep S, et al. Chronic Kidney Disease in a Large National Human Immunodeficiency Virus Treatment Program. Healthcare. 2022; 10(8):1490. https://doi.org/10.3390/healthcare10081490
Chicago/Turabian StylePaengsai, Ninutcha, Kajohnsak Noppakun, Gonzague Jourdain, Tim Roy Cressey, Nicolas Salvadori, Romanee Chaiwarith, Apichat Tantraworasin, Jean Yves Mary, Chureeratana Bowonwatanuwong, Sorakij Bhakeecheep, and et al. 2022. "Chronic Kidney Disease in a Large National Human Immunodeficiency Virus Treatment Program" Healthcare 10, no. 8: 1490. https://doi.org/10.3390/healthcare10081490
APA StylePaengsai, N., Noppakun, K., Jourdain, G., Cressey, T. R., Salvadori, N., Chaiwarith, R., Tantraworasin, A., Mary, J. Y., Bowonwatanuwong, C., Bhakeecheep, S., Traisathit, P., & Kosachunhanun, N. (2022). Chronic Kidney Disease in a Large National Human Immunodeficiency Virus Treatment Program. Healthcare, 10(8), 1490. https://doi.org/10.3390/healthcare10081490