Effect of Whole-Body Cryotherapy on Iron Status and Biomarkers of Neuroplasticity in Multiple Sclerosis Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Characteristics
- Groups with MS:
- ○
- Diagnosed MS (McDonald review criteria),
- ○
- Expanded Disability Status Scale (EDSS): 0 to 6.5.
- All respondents (MS and CONT):
- ○
- Female sex,
- ○
- Age: 30–55 years,
- ○
- Written consent of the patient to participate in the study.
- Contraindications to WBC,
- Change of diet during the project or immediately before,
- Other forms of treatments or physical activity during the project or immediately before.
- Experimental group (MS): 15 women with multiple sclerosis (mean age 41.53 ± 6.98 years);
- Control group (CONT): 15 healthy women (without neurological diseases and other chronic diseases) (mean age 38.47 ± 6.0 years).
2.2. Analysis of Biochemical Blood Indices
2.3. Description of the Intervention
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weiner, H.L. Multiple Sclerosis Is an Inflammatory T-Cell–Mediated Autoimmune Disease. Arch. Neurol. 2004, 61, 1613–1615. [Google Scholar] [CrossRef] [PubMed]
- Dendrou, C.A.; Fugger, L.; Friese, M.A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 2015, 15, 545–558. [Google Scholar] [CrossRef]
- Ramagopalan, S.V.; Sadovnick, A.D. Epidemiology of multiple sclerosis. Neurol. Clin. 2011, 29, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Janský, P.; Janský, L. Sites and cellular mechanisms of human adrenergic thermogenesis–a review. J. Therm. Biol. 2002, 27, 269–277. [Google Scholar] [CrossRef]
- Leppäluoto, J.; Westerlund, T.; Huttunen, P.; Oksa, J.; Smolander, J.; Dugué, B.; Mikkelsson, M. Effects of long-term whole-body cold exposures on plasma concentrations of ACTH, beta-endorphin, cortisol, catecholamines and cytokines in healthy females. Scand. J. Clin. Lab. Invest. 2008, 68, 145–153. [Google Scholar] [CrossRef]
- Lombardi, G.; Ziemann, E.; Banfi, G. Whole-Body Cryotherapy in Athletes: From Therapy to Stimulation. An Updated Review of the Literature. Front. Physiol. 2017, 8, 258. [Google Scholar] [CrossRef]
- Brenke, R. Effekte und Wirkmechanismen der so genannten Abhärtung. Schweiz. Z Ganzheitsmed. 2010, 22, 37–44. [Google Scholar] [CrossRef]
- Cholewka, A.; Stanek, A.; Sieroń, A.; Drzazga, Z. Thermography study of skin response due to whole-body cryotherapy. Skin Res. Technol. 2012, 18, 180–187. [Google Scholar] [CrossRef]
- Hurrell, R.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010, 91, 1461S–1467S. [Google Scholar] [CrossRef]
- Balogh, E.; Paragh, G.; Jeney, V. Influence of Iron on Bone Homeostasis. Pharmaceuticals 2018, 11, 107. [Google Scholar] [CrossRef] [Green Version]
- Milewska-Jędrzejczak, M.; Damiza-Detmer, A.; Damiza, I.; Głąbiński, A. Biomarkers of brain plasticity in multiple sclerosis. Aktualn. Neurol. 2019, 19, 13–18. [Google Scholar] [CrossRef]
- Sfagos, C.; Makis, A.C.; Chaidos, A.; Hatzimichael, E.; Dalamaga, A.; Kosma, K.; Bourantas, K.L. Serum ferritin, transferrin and soluble transferrin receptor levels in multiple sclerosis patients. Mult. Scler. J. 2005, 11, 272–275. [Google Scholar] [CrossRef]
- Stankiewicz, J.; Panter, S.S.; Neema, M.; Arora, A.; Batt, C.E.; Bakshi, R. Iron in chronic brain disorders: Imaging and neurotherapeutic implications. Neurotherapeutics 2007, 4, 371–386. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.; Riedlbauer, B.; Langkammer, C.; Enzinger, C.; Ropele, S.; Stojakovic, T.; Scharnagl, H.; Culea, V.; Petzold, A.; Teunissen, C.; et al. Cerebrospinal fluid transferrin levels are reduced in patients with early multiple sclerosis. Mult. Scler. J. 2014, 20, 1569–1577. [Google Scholar] [CrossRef] [PubMed]
- Gezer, Y.M.; Gursoy, A.E.B.; Selek, S. Evaluation of Ferritin, Transferrin, Myelin Basic Protein, and Myelin Oligoden-drocyte Glycoprotein Parameter in CSF Samples Taken from Multiple Sclerosis Patients. Bezmialem Sci. 2021, 9, S33. [Google Scholar]
- Iranmanesh, F.; Bakhsgi, H.; Akbaripoor, A. Serum Iron and Ferritin in Patients with Multiple Sclerosis. ZJRMS 2013, 15, 39–42. [Google Scholar]
- Abo-Krysha, N.; Rashed, L. The role of iron dysregulation in the pathogenesis of multiple sclerosis: An Egyptian study. Mult. Scler. J. 2008, 14, 602–608. [Google Scholar] [CrossRef]
- Forte, G.; Visconti, A.; Santucci, S.; Ghazaryan, A.; Figà-Talamanca, L.; Cannoni, S.; Bocca, B.; Pino, A.; Violante, N.; Alimonti, A.; et al. Quantification of chemical elements in blood of patients affected by multiple sclerosis. Ann. Ist. Super. Sanita 2005, 41, 213–216. [Google Scholar] [PubMed]
- Alimonti, A.; Ristori, G.; Giubilei, F.; Stazi, M.A.; Pino, A.; Visconti, A.; Brescianini, S.; Monti, M.S.; Forte, G.; Stanzione, P. Serum chemical elements and oxidative status in Alzheimer’s disease, Parkinson disease and multiple sclerosis. Neurotoxicology 2007, 28, 450–456. [Google Scholar] [CrossRef]
- Johnson, S. The possible role of gradual accumulation of copper, cadmium, lead and iron and gradual depletion of zinc, magnesium, selenium, vitamins B2, B6, D, and E and essential fatty acids in multiple sclerosis. Med. Hypotheses 2000, 55, 239–241. [Google Scholar] [CrossRef]
- Ferreira, K.P.Z.; Oliveira, S.R.; Kallaur, A.P.; Kaimen-Maciel, D.R.; Lozovoy, M.A.B.; de Almeida, E.R.D.; Morimoto, H.K.; Mezzaroba, L.; Dichi, I.; Reiche, E.M.V.; et al. Disease progression and oxidative stress are associated with higher serum ferritin levels in patients with multiple sclerosis. J. Neurol. Sci. 2017, 373, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Olsson, A.; Gustavsen, S.; Lauridsen, K.G.; Hasselbalch, I.C.; Sellebjerg, F.; Søndergaard, H.B.; Oturai, A.B. Neutrophil-to-lymphocyte ratio and CRP as biomarkers in multiple sclerosis: A systematic review. Acta Neurol. Scand. 2021, 143, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Rossi, C.; Angelucci, A.; Costantin, L.; Braschi, C.; Mazzantini, M.; Babbini, F.; Fabbri, M.E.; Tessarollo, L.; Maffei, L.; Berardi, N.; et al. Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur. J. Neurosci. 2006, 24, 1850–1856. [Google Scholar] [CrossRef] [PubMed]
- Patanella, A.K.; Zinno, M.; Quaranta, D.; Nociti, V.; Frisullo, G.; Gainotti, G.; Tonali, P.; Batocchi, A.; Marra, C. Correlations between peripheral blood mononuclear cell production of BDNF, TNF-alpha, IL-6, IL-10 and cognitive performances in multiple sclerosis patients. J. Neurosci. Res. 2009, 88, 1106–1112. [Google Scholar] [CrossRef] [PubMed]
- Frota, E.R.C.; Rodrigues, D.H.; Donadi, E.A.; Brum, D.G.; Maciel, D.R.K.; Teixeira, A.L. Increased plasma levels of brain derived neurotrophic factor (BDNF) after multiple sclerosis relapse. Neurosci. Lett. 2009, 460, 130–132. [Google Scholar] [CrossRef] [PubMed]
- Sarchielli, P.; Greco, L.; Stipa, A.; Floridi, A.; Gallai, V. Brain-derived neurotrophic factor in patients with multiple sclerosis. J. Neuroimmunol. 2002, 132, 180–188. [Google Scholar] [CrossRef]
- Zembron-Lacny, A.; Morawin, B.; Wawrzyniak-Gramacka, E.; Gramacki, J.; Jarmuzek, P.; Kotlega, D.; Ziemann, E. Multiple Cryotherapy Attenuates Oxi-Inflammatory Response Following Skeletal Muscle Injury. Int. J. Environ. Res. Public Health 2020, 17, 7855. [Google Scholar] [CrossRef]
- Rymaszewska, J.; Urbanska, K.M.; Szczesniak, D.; Stanczykiewicz, B.; Trypka, E.; Zablocka, A. The Improvement of Memory Deficits after Whole-Body Cryotherapy—The First Report. Cryoletters 2018, 39, 190–195. [Google Scholar]
- Castellanos, M.R.; Aguiar, J.; Fernández, C.I.; Almaguer, W.; Mejias, C.; Varela, A. Evaluation of the neurorestorative effects of the murine beta-nerve growth factor infusions in old rat with cognitive deficit. Biochem. Biophys. Res. Commun. 2003, 312, 867–872. [Google Scholar] [CrossRef]
- Urschel, B.A.; Hulsebosch, C.E. Schwann cell-neuronal interactions in the rat involve nerve growth factor. J. Comp. Neurol. 1990, 296, 114–122. [Google Scholar] [CrossRef]
- Acosta, C.; Cortes, C.; Macphee, H.; Namaka, M. Exploring the role of nerve growth factor in multiple sclerosis: Implications in myelin repair. CNS Neurol. Disord. Drug Targets 2014, 12, 1242–1256. [Google Scholar] [CrossRef] [PubMed]
- Bazhenov, I.V.; Filippova, E.S.; Bazarnyi, V.V.; Sazonov, S.V.; Volkova, L.I.; Zaitseva, L.N. Sensitivity and specificity of urinary and serum neurotrophins in the diagnosis of neurogenic detrusor overactivity in multiple sclerosis. Urologia 2018, 3, 44–48. [Google Scholar] [CrossRef]
- Vana, A.C.; Flint, N.C.; Harwood, N.E.; Le, T.Q.; Fruttiger, M.; Armstrong, R.C. Platelet-Derived Growth Factor Promotes Repair of Chronically Demyelinated White Matter. J. Neuropathol. Exp. Neurol. 2007, 66, 975–988. [Google Scholar] [CrossRef] [Green Version]
- Mori, F.; Rossi, S.; Piccinin, S.; Motta, C.; Mango, D.; Kusayanagi, H.; Bergami, A.; Studer, V.; Nicoletti, C.G.; Buttari, F.; et al. Synaptic Plasticity and PDGF Signaling Defects Underlie Clinical Progression in Multiple Sclerosis. J. Neurosci. 2013, 33, 19112–19119. [Google Scholar] [CrossRef] [PubMed]
- Mori, F.; Nicoletti, C.G.; Rossi, S.; Motta, C.; Kusayanagi, H.; Bergami, A.; Studer, V.; Buttari, F.; Barbieri, F.; Weiss, S.; et al. Growth Factors and Synaptic Plasticity in Relapsing–Remitting Multiple Sclerosis. Neuromol. Med. 2014, 16, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Harirchian, M.H.; Tekieh, A.H.; Modabbernia, A.; Aghamollaii, V.; Tafakhori, A.; Ghaffarpour, M.; Sahraian, M.A.; Naji, M.; Yazdanbakhsh, M. Serum and CSF PDGF-AA and FGF-2 in relapsing-remitting multiple sclerosis: A case-control study. Eur. J. Neurol. 2012, 19, 241–247. [Google Scholar] [CrossRef]
- Mazdeh, M.; Noroozi, R.; Gharesouran, J.; Sayad, A.; Komaki, A.; Eftekharian, M.M.; Habibi, M.; Toghi, M.; Taheri, M. The Importance of VEGF-KDR Signaling Pathway Genes Should Not Be Ignored When the Risk of Developing Multiple Sclerosis is Taken into Consideration. J. Mol. Neurosci. 2017, 62, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Herz, J.; Reitmeir, R.; Hagen, S.I.; Reinboth, B.S.; Guo, Z.; Zechariah, A.; ElAli, A.; Doeppner, T.R.; Bacigaluppi, M.; Pluchino, S.; et al. Intracerebroventricularly delivered VEGF promotes contralesional corticorubral plasticity after focal cerebral ischemia via mechanisms involving anti-inflammatory actions. Neurobiol. Dis. 2012, 45, 1077–1085. [Google Scholar] [CrossRef]
- Nageeb, R.S.; Hashim, N.A.; Fawzy, A. Serum insulin-like growth factor 1 (IGF-1) in multiple sclerosis: Relation to cog-nitive impairment and fatigue. Egypt J. Neurol. Psychiatr. Neurosurg. 2018, 54, 25. [Google Scholar] [CrossRef]
- Gironi, M.; Solaro, C.; Meazza, C.; Vaghi, M.; Montagna, L.; Rovaris, M.; Batocchi, A.P.; Nemni, R.; Albertini, R.; Zaffaroni, M.; et al. Growth Hormone and Disease Severity in Early Stage of Multiple Sclerosis. Mult. Scler. Int. 2013, 2013, 836486. [Google Scholar] [CrossRef]
- Lanzillo, R.; Di Somma, C.; Quarantelli, M.; Ventrella, G.; Gasperi, M.; Prinster, A.; Vacca, G.; Pivonello, C.; Orefice, G.; Colao, A.; et al. Insulin-like growth factor (IGF)-I and IGF-binding protein-3 serum levels in relapsing-remitting and secondary progressive multiple sclerosis patients. Eur. J. Neurol. 2011, 18, 1402–1406. [Google Scholar] [CrossRef]
- Wilczak, N.; Schaaf, M.; Bredewold, R.; Streefland, C.; Teelken, A.; De Keyser, J. Insulin-like growth factor system in serum and cerebrospinal fluid in patients with multiple sclerosis. Neurosci. Lett. 1998, 257, 168–170. [Google Scholar] [CrossRef]
- Ghassan, F.; Abdul Kareem, W.; Jasim, T.M. Evaluation of insulin like growth factor 1 (IGF-1) and selected biochemical markers in Iraqi patients with multiple sclerosis. Int. J. Pharm. Sci. Rev. Res. 2017, 42, 68–72. [Google Scholar]
- El-Sayes, J.; Harasym, D.; Turco, C.V.; Locke, M.B.; Nelson, A.J. Exercise-Induced Neuroplasticity: A Mechanistic Model and Prospects for Promoting Plasticity. Neuroscientist 2019, 25, 65–85. [Google Scholar] [CrossRef] [PubMed]
- Pickersgill, J.W.; Turco, C.V.; Ramdeo, K.; Rehsi, R.S.; Foglia, S.D.; Nelson, A.J. The Combined Influences of Exercise, Diet and Sleep on Neuroplasticity. Front. Psychol. 2022, 13, 831819. [Google Scholar] [CrossRef] [PubMed]
Characteristics | MS n = 15 | CONT n = 15 |
---|---|---|
Age [years] | 41.53 ± 6.98 | 38.47 ± 6.00 |
Body height [cm] | 165.93 ± 6.53 | 169.4 ± 5.79 |
Body mass [kg] | 66.75 ± 16.78 | 72.35 ± 13.85 |
Body mass index [kg/m2] | 24.18 ± 5.68 | 25.22 ± 4.81 |
Fat [%] | 33.26 ± 7.45 | 30.47 ± 6.65 |
Lean body mass [kg] | 43.45 ± 5.68 | 49.55 ± 5.90 |
Total body water [kg] | 31.83 ± 4.21 | 36.28 ± 4.32 |
EDSS score | 3.03 ± 1.67 | - |
Disease duration [years] | 11.00 ± 6.49 | - |
Disease course [%]—Primary progressive | 13.33 | - |
Disease course [%]—Relapsing-remitting | 86.67 | - |
Parameter | MS Study 1 | MS Study 2 | (p) | CONT Study 1 | CONT Study 2 | (p) | MS Study 1/CONT Study 1 (p) |
---|---|---|---|---|---|---|---|
Iron [µmol/L] | 15.37 ± 8.76 | 12.99 ± 5.99 | 0.151 | 16.06 ± 6.14 | 13.42 ± 4.38 | 0.179 | 0.805 |
Ferritin [ng/mL] | 37.97 ± 37.83 | 31.92 ± 28.95 | 0.244 | 19.22 ± 11.21 | 21.27 ± 14.38 | 0.390 | 0.076 |
Transferrin [g/L] | 2.97 ± 0.44 | 2.78 ± 0.44 | 0.042 | 2.75 ± 0.58 | 2.70 ± 0.50 | 0.305 | 0.261 |
IgG [g/L] | 11.56 ± 2.81 | 11.24 ± 2.37 | 0.092 | 12.73 ± 2.32 | 12.38 ± 2.25 | 0.361 | 0.223 |
IgA [g/L] | 2.24 ± 0.99 | 2.16 ± 0.96 | 0.132 | 1.72 ± 0.40 | 1.76 ± 0.37 | 0.504 | 0.068 |
IgM [g/L] | 1.33 ± 0.72 | 1.19 ± 0.59 | 0.068 | 1.17 ± 0.37 | 1.18 ± 0.33 | 0.806 | 0.456 |
CRP [mg/L] | 2.03 ± 2.22 | 1.27 ± 0.79 | 0.19 | 2.60 ± 3.54 | 2.22 ± 2.86 | 0.530 | 0.603 |
bdnf [ng/mL] | 1.89 ± 0.51 | 2.21 ± 2.13 | 0.562 | 2.40 ± 1.87 | 2.25 ± 1.70 | 0.513 | 0.323 |
ngf [pg/mL] | 184.63 ± 119.09 | 262.60 ± 287.11 | 0.201 | 290.75 ± 280.72 | 262.67 ± 201.82 | 0.589 | 0.188 |
pdgf [pg/mL] | 454.87 ± 361.69 | 452.97 ± 382.48 | 0.981 | 383.46 ± 231.79 | 450.42 ± 315.12 | 0.449 | 0.524 |
vegf [ng/L] | 616.30 ± 304.19 | 649.78 ± 400.24 | 0.616 | 690.77 ± 402.40 | 645.46 ± 351.48 | 0.592 | 0.572 |
igf-1 [ng/mL] | 79.50 ± 33.56 | 90.70 ± 37.92 | 0.080 | 90.42 ± 37.41 | 119.45 ± 104.12 | 0.327 | 0.407 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ptaszek, B.; Podsiadło, S.; Czerwińska-Ledwig, O.; Maciejczyk, M.; Teległów, A. Effect of Whole-Body Cryotherapy on Iron Status and Biomarkers of Neuroplasticity in Multiple Sclerosis Women. Healthcare 2022, 10, 1681. https://doi.org/10.3390/healthcare10091681
Ptaszek B, Podsiadło S, Czerwińska-Ledwig O, Maciejczyk M, Teległów A. Effect of Whole-Body Cryotherapy on Iron Status and Biomarkers of Neuroplasticity in Multiple Sclerosis Women. Healthcare. 2022; 10(9):1681. https://doi.org/10.3390/healthcare10091681
Chicago/Turabian StylePtaszek, Bartłomiej, Szymon Podsiadło, Olga Czerwińska-Ledwig, Marcin Maciejczyk, and Aneta Teległów. 2022. "Effect of Whole-Body Cryotherapy on Iron Status and Biomarkers of Neuroplasticity in Multiple Sclerosis Women" Healthcare 10, no. 9: 1681. https://doi.org/10.3390/healthcare10091681
APA StylePtaszek, B., Podsiadło, S., Czerwińska-Ledwig, O., Maciejczyk, M., & Teległów, A. (2022). Effect of Whole-Body Cryotherapy on Iron Status and Biomarkers of Neuroplasticity in Multiple Sclerosis Women. Healthcare, 10(9), 1681. https://doi.org/10.3390/healthcare10091681