Impact of Movement Control Training Using a Laser Device on the Neck Pain and Movement of Patients with Cervicogenic Headache: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Outcome Measures
2.3.1. Flexion-Rotation Test
2.3.2. Cervical Range of Motion
2.3.3. Pressure Pain Threshold
2.3.4. Sensory Discrimination
2.3.5. Headache Impact Test-6
2.3.6. Neck Disability Index
2.4. Interventions
2.4.1. Therapeutic Massage and Manual Mobilization
2.4.2. Movement Control Training Using a Laser Device
2.4.3. Self-Stretching
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Flexion-Rotation Test
3.3. Cervical Range of Motion
3.4. Pressure Pain Threshold
3.5. Sensory Discrimination
3.6. Headache Impact Test-6
3.7. Neck Disability Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
References
- Lipton, R.B.; Stewart, W.F. Evaluating the IHS criteria. Cephalalgia 1994, 14, 3. [Google Scholar] [CrossRef] [PubMed]
- Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia 2013, 33, 629–808. [Google Scholar] [CrossRef] [PubMed]
- Bogduk, N.; Govind, J. Cervicogenic headache: An assessment of the evidence on clinical diagnosis, invasive tests, and treatment. Lancet Neurol. 2009, 8, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Cooper, G.; Bailey, B.; Bogduk, N. Cervical zygapophysial joint pain maps. Pain Med. 2007, 8, 344–353. [Google Scholar] [CrossRef]
- García, C.H.; Moreno, J.T.; Nicolás, R.G.; Donoso, C.G.; Díaz, A.G.; Lacasa, S.S.G. Cervical manipulation: Anatomical and biomechanical approach facing possible risks and practical implications. Fisioterapia 2007, 29, 298–303. [Google Scholar]
- García, C.H. Efectos de la Movilización Translatoria Occipito-Atloidea en la Movilidad de la Columna Cervical Superior en Sujetos con Hipomovilidad Atlanto-Axoidea. Ph.D. Thesis, Universidad de Zaragoza, Zaragoza, Spain, 2013. [Google Scholar]
- Castien, R.; De Hertogh, W. A neuroscience perspective of physical treatment of headache and neck pain. Front. Neurol. 2019, 10, 276. [Google Scholar] [CrossRef]
- Flor, H.; Denke, C.; Schaefer, M.; Grüsser, S. Effect of sensory discrimination training on cortical reorganisation and phantom limb pain. Lancet 2001, 357, 1763–1764. [Google Scholar] [CrossRef]
- Moseley, G.L.; Zalucki, N.M.; Wiech, K. Tactile discrimination, but not tactile stimulation alone, reduces chronic limb pain. Pain 2008, 137, 600–608. [Google Scholar] [CrossRef]
- Moseley, G.L.; Wiech, K. The effect of tactile discrimination training is enhanced when patients watch the reflected image of their unaffected limb during training. Pain 2009, 144, 314–319. [Google Scholar] [CrossRef]
- Wand, B.M.; O’Connell, N.E.; Di Pietro, F.; Bulsara, M. Managing chronic nonspecific low back pain with a sensorimotor retraining approach: Exploratory multiple-baseline study of 3 participants. Phys. Ther. 2011, 91, 535–546. [Google Scholar] [CrossRef]
- Wand, B.M.; Abbaszadeh, S.; Smith, A.J.; Catley, M.J.; Moseley, G.L. Acupuncture applied as a sensory discrimination training tool decreases movement-related pain in patients with chronic low back pain more than acupuncture alone: A randomised cross-over experiment. Br. J. Sports Med. 2013, 47, 1085–1089. [Google Scholar] [CrossRef]
- Sheikhhoseini, R.; Shahrbanian, S.; Sayyadi, P.; O’Sullivan, K. Effectiveness of therapeutic exercise on forward head posture: A systematic review and meta-analysis. J. Manip. Physiol. Ther. 2018, 41, 530–539. [Google Scholar] [CrossRef]
- Chu, E.C.-P.; Lim, T.; Mak, K.-C. Cervical radiculopathy alleviating by manipulative correction of cervical hypolordosis. J. Med. Cases 2018, 9, 139–141. [Google Scholar] [CrossRef]
- Chu, E.C.; Lo, F.S.; Bhaumik, A. Plausible impact of forward head posture on upper cervical spine stability. J. Fam. Med. Prim. Care 2020, 9, 2517. [Google Scholar] [CrossRef]
- Zito, G.; Jull, G.; Story, I. Clinical tests of musculoskeletal dysfunction in the diagnosis of cervicogenic headache. Man. Ther. 2006, 11, 118–129. [Google Scholar] [CrossRef]
- Steilen, D.; Hauser, R.; Woldin, B.; Sawyer, S. Chronic neck pain: Making the connection between capsular ligament laxity and cervical instability. Open Orthop. J. 2014, 8, 326. [Google Scholar] [CrossRef]
- Lee, H.M. Postural Control in the Patients with Chronic Tension-Type Headache. J. Korean Neurol. Assoc. 2007, 25, 324–331. [Google Scholar] [CrossRef]
- Jull, G.; Barrett, C.; Magee, R.; Ho, P. Further clinical clarification of the muscle dysfunction in cervical headache. Cephalalgia 1999, 19, 179–185. [Google Scholar] [CrossRef]
- Kisner, C.; Colby, L.A. Therapeutic Exercise: Foundations and Techniques; FA Davis Company: Philadelphia, PA, USA, 2002; pp. 13–24. [Google Scholar]
- Chae, Y.W.; Lee, H.M. The effect of craniocervical exercise on tension-type headache. J. Korean Phys. Ther. 2009, 21, 9–16. [Google Scholar]
- Fernández-de-las-Peñas, C.; Pérez-de-Heredia, M.; Molero-Sánchez, A.; Miangolarra-Page, J.C. Performance of the craniocervical flexion test, forward head posture, and headache clinical parameters in patients with chronic tension-type headache: A pilot study. J. Orthop. Sports Phys. Ther. 2007, 37, 33–39. [Google Scholar] [CrossRef]
- McPartland, J.M.; Brodeur, R.R.; Hallgren, R.C. Chronic neck pain, standing balance, and suboccipital muscle atrophy—A pilot study. J. Manip. Physiol. Ther. 1997, 20, 24–29. [Google Scholar]
- Haas, M.; Schneider, M.; Vavrek, D. Illustrating risk difference and number needed to treat from a randomized controlled trial of spinal manipulation for cervicogenic headache. Chiropr. Osteopat. 2010, 18, 9. [Google Scholar] [CrossRef] [PubMed]
- Page, P. Cervicogenic headaches: An evidence-led approach to clinical management. Int. J. Sports Phys. Ther. 2011, 6, 254. [Google Scholar] [PubMed]
- Fernández-de-Las-Peñas, C. Physical therapy and exercise in headache. Cephalalgia 2008, 28, 36–38. [Google Scholar] [CrossRef]
- Fernandez-de-Las-Penas, C.; Alonso-Blanco, C.; Cuadrado, M.; Pareja, J. Neck mobility and forward head posture are not related to headache parameters in chronic tension-type headache. Cephalalgia 2007, 27, 158–164. [Google Scholar] [CrossRef]
- Comerford, M.; Mottram, S. Kinetic Control: The Management of Uncontrolled Movement; Elsevier: London, UK, 2012; pp. 1–554. [Google Scholar]
- Khosrokiani, Z.; Letafatkar, A.; Sokhanguei, Y. Long-term effect of direction-movement control training on female patients with chronic neck pain. J. Bodyw. Mov. Ther. 2018, 22, 217–224. [Google Scholar] [CrossRef]
- Hofmann, S.G.; Dozois, D.J.; Rief, W.E.; Smits, J.A. The Wiley Handbook of Cognitive Behavioral Therapy; Wiley Blackwell: Hoboken, NJ, USA, 2014; Volumes 1–3. [Google Scholar]
- Dursun, N.; Dursun, E.; Kiliç, Z. Electromyographic biofeedback—Controlled exercise versus conservative care for patellofemoral pain syndrome. Arch. Phys. Med. Rehabil. 2001, 82, 1692–1695. [Google Scholar] [CrossRef]
- Christiansen, C.L.; Bade, M.J.; Davidson, B.S.; Dayton, M.R.; Stevens-Lapsley, J.E. Effects of weight-bearing biofeedback training on functional movement patterns following total knee arthroplasty: A randomized controlled trial. J. Orthop. Sports Phys. Ther. 2015, 45, 647–655. [Google Scholar] [CrossRef]
- Armstrong, B.; McNair, P.; Taylor, D. Head and neck position sense. Sports Med. 2008, 38, 101–117. [Google Scholar] [CrossRef]
- Jull, G.; Falla, D.; Treleaven, J.; Hodges, P.; Vicenzino, B. Retraining cervical joint position sense: The effect of two exercise regimes. J. Orthop. Res. 2007, 25, 404–412. [Google Scholar] [CrossRef]
- Taimela, S.; Takala, E.-P.; Asklöf, T.; Seppälä, K.; Parviainen, S. Active treatment of chronic neck pain: A prospective randomized intervention. Spine 2000, 25, 1021–1027. [Google Scholar] [CrossRef]
- Al Shehri, A.; Khan, S.; Shamsi, S.; Almureef, S.S. Comparative Study of Mulligan (SNAGS) and Maitland Mobilization in Neck Pain. Eur. J. Phys. Educ. Sport Sci. 2018, 5, 19–29. [Google Scholar]
- Lee, K.S.; Lee, J.H. Effect of maitland mobilization in cervical and thoracic spine and therapeutic exercise on functional impairment in individuals with chronic neck pain. J. Phys. Ther. Sci. 2017, 29, 531–535. [Google Scholar] [CrossRef]
- Biondi, D.M. Cervicogenic headache: Mechanisms, evaluation, and treatment strategies. J. Osteopath. Med. 2000, 100, 7–14. [Google Scholar] [CrossRef]
- Malo-Urriés, M.; Tricás-Moreno, J.M.; Estébanez-de-Miguel, E.; Hidalgo-García, C.; Carrasco-Uribarren, A.; Cabanillas-Barea, S. Immediate effects of upper cervical translatoric mobilization on cervical mobility and pressure pain threshold in patients with cervicogenic headache: A randomized controlled trial. J. Manip. Physiol. Ther. 2017, 40, 649–658. [Google Scholar] [CrossRef]
- Sauro, K.M.; Rose, M.S.; Becker, W.J.; Christie, S.N.; Giammarco, R.; Mackie, G.F.; Eloff, A.G.; Gawel, M.J. HIT-6 and MIDAS as measures of headache disability in a headache referral population. Headache 2010, 50, 383–395. [Google Scholar] [CrossRef]
- Hall, T.; Robinson, K. The flexion–rotation test and active cervical mobility—A comparative measurement study in cervicogenic headache. Man. Ther. 2004, 9, 197–202. [Google Scholar] [CrossRef]
- Joyce, C.; Zutshi, D.; Hrubes, V.; Mason, R. Comparison of fixed interval and visual analogue scales for rating chronic pain. Eur. J. Clin. Pharmacol. 1975, 8, 415–420. [Google Scholar] [CrossRef]
- Lee, S.M.; Lee, C.H.; O’Sullivan, D.; Jung, J.H.; Park, J.J. Clinical effectiveness of a Pilates treatment for forward head posture. J. Phys. Ther. Sci. 2016, 28, 2009–2013. [Google Scholar] [CrossRef]
- Lluch, E.; Arguisuelas, M.D.; Coloma, P.S.; Palma, F.; Rey, A.; Falla, D. Effects of deep cervical flexor training on pressure pain thresholds over myofascial trigger points in patients with chronic neck pain. J. Manip. Physiol. Ther. 2013, 36, 604–611. [Google Scholar] [CrossRef]
- Louw, A.; Farrell, K.; Zimney, K.; Feller, K.; Jones, C.; Martin, B.; Rettenmeier, M.; Theisen, M.; Wedeking, D. Pain and decreased range of motion in knees and shoulders: A brief sensory remapping intervention. Pain Rehabil.-J. Physiother. Pain Assoc. 2017, 2017, 20–30. [Google Scholar]
- Vernon, H. The psychometric properties of the Neck Disability Index. Arch. Phys. Med. Rehabil. 2008, 89, 1414–1415. [Google Scholar] [CrossRef] [PubMed]
- Clay, J.H. Basic Clinical Massage Therapy: Integrating Anatomy and Treatment; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2008. [Google Scholar]
- Kaltenborn, F. Manual Mobilization of the Joints, Volume II: The Spine; IAOM-US: Delft, The Netherlands, 2009. [Google Scholar]
- Bradley, B.; Haladay, D. The effects of a laser-guided postural reeducation program on pain, neck active range of motion, and functional improvement in a 75-year-old patient with cervical dystonia. Physiother. Theory Pract. 2020, 36, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Evjenth, O. Autostretching: The Complete Manual of Specific Stretching; Chattanooga Corp: Hixson, TN, USA, 2001. [Google Scholar]
- Bogduk, N. Cervicogenic headache: Anatomic basis and pathophysiologic mechanisms. Curr. Pain Headache Rep. 2001, 5, 382–386. [Google Scholar] [CrossRef]
- Rodríguez-Sanz, J.; Malo-Urriés, M.; Lucha-López, M.O.; Pérez-Bellmunt, A.; Carrasco-Uribarren, A.; Fanlo-Mazas, P.; Corral-de-Toro, J.; Hidalgo-García, C. Effects of the manual therapy approach of segments C0-1 and C2-3 in the flexion-rotation test in patients with chronic neck pain: A randomized controlled trial. Int. J. Environ. Res. Public Health 2021, 18, 753. [Google Scholar] [CrossRef]
- Neumann, D.A. Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation, 2nd ed.; Mosby: Maryland Heights, MO, USA, 2010; pp. 593–595. [Google Scholar]
- Malmström, E.M.; Karlberg, M.; Fransson, P.A.; Melander, A.; Magnusson, M. Primary and coupled cervical movements: The effect of age, gender, and body mass index. A 3-dimensional movement analysis of a population without symptoms of neck disorders. Spine 2006, 31, E44–E50. [Google Scholar] [CrossRef]
- Thomas, E.; Bianco, A.; Paoli, A.; Palma, A. The relation between stretching typology and stretching duration: The effects on range of motion. Int. J. Sports Med. 2018, 39, 243–254. [Google Scholar] [CrossRef]
- Oh, S.-H.; Yoo, K.-T. The effects of stabilization exercises using a sling and stretching on the range of motion and cervical alignment of straight neck patients. J. Phys. Ther. Sci. 2016, 28, 372–377. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, K.H. A Convergence Study on the Effects of functional electrical stimulation with mirror therapy on balance and gait ability in chronic stroke patients. J. Korea Converg. Soc. 2018, 9, 109–120. [Google Scholar] [CrossRef]
- Jang, W.-S.; Choi, S.-H. The immediate effect of soft tissue mobilization before mobilization with movement on the ankle range of motion, muscle tissue, balance in stroke patients. J. Korean Acad. Orthop. Man. Phys. Ther. 2020, 26, 37–46. [Google Scholar]
- Schmidt, R.A.; Lee, T.D.; Winstein, C.; Wulf, G.; Zelaznik, H.N. Motor Control and Learning: A Behavioral Emphasis; Human Kinetics: Champaign, IL, USA, 2018. [Google Scholar]
- Young, I.A.; Dunning, J.; Butts, R.; Cleland, J.A.; Fernández-de-Las-Peñas, C. Psychometric properties of the Numeric Pain Rating Scale and Neck Disability Index in patients with cervicogenic headache. Cephalalgia 2019, 39, 44–51. [Google Scholar] [CrossRef]
- Min, I.-g.; Kim, S.-y. Effects of Cervical Sensorimotor Control Training on Pain, Function and Psychosocial Status in Patients with Chronic Neck Pain. Phys. Ther. Korea 2021, 28, 36–46. [Google Scholar] [CrossRef]
- Vanderweeen, L.; Oostendorp, R.; Vaes, P.; Duquet, W. Pressure algometry in manual therapy. Man. Ther. 1996, 1, 258–265. [Google Scholar] [CrossRef]
- Sahrmann, S.; Azevedo, D.C.; Dillen, L.V. Diagnosis and treatment of movement system impairment syndromes. Braz. J. Phys. Ther. 2017, 21, 391–399. [Google Scholar] [CrossRef]
- Morrissey, D.; Morrissey, M.C.; Driver, W.; King, J.B.; Woledge, R.C. Manual landmark identification and tracking during the medial rotation test of the shoulder: An accuracy study using three-dimensional ultrasound and motion analysis measures. Man. Ther. 2008, 13, 529–535. [Google Scholar] [CrossRef]
- Yang, H.; Kim, Y.; Myung, H.; Park, H. The effects of sling exercise on muscle tension and pain of forward head posture. J. Korean Soc. Sprots Phy. Ther. 2007, 3, 63–70. [Google Scholar]
- Kraus, S. Temporomandibular disorders, head and orofacial pain: Cervical spine considerations. Dent. Clin. 2007, 51, 161–193. [Google Scholar] [CrossRef]
- Olivo, S.A.; Fuentes, J.; Major, P.; Warren, S.; Thie, N.; Magee, D. The association between neck disability and jaw disability. J. Oral Rehabil. 2010, 37, 670–679. [Google Scholar] [CrossRef]
- Stiesch-Scholz, M.; Fink, M.; Tschernitschek, H. Comorbidity of internal derangement of the temporomandibular joint and silent dysfunction of the cervical spine. J. Oral Rehabil. 2003, 30, 386–391. [Google Scholar] [CrossRef]
- Fink, M.; Tschernitschek, H.; Stiesch-Scholz, M. Asymptomatic cervical spine dysfunction (CSD) in patients with internal derangement of the temporomandibular joint. Cranio 2002, 20, 192–197. [Google Scholar] [CrossRef]
- Inoue, E.; Maekawa, K.; Minakuchi, H.; Nagamatsu-Sakaguchi, C.; Ono, T.; Matsuka, Y.; Clark, G.T.; Kuboki, T. The relationship between temporomandibular joint pathosis and muscle tenderness in the orofacial and neck/shoulder region. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2010, 109, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Florencio, L.L.; Ferracini, G.N.; Chaves, T.C.; Palacios-Ceña, M.; Ordás-Bandera, C.; Speciali, J.G.; Falla, D.; Grossi, D.B.; Fernández-de-Las-Peñas, C. Active trigger points in the cervical musculature determine the altered activation of superficial neck and extensor muscles in women with migraine. Clin. J. Pain 2017, 33, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Ginszt, M.; Szkutnik, J.; Zieliński, G.; Bakalczuk, M.; Stodółkiewicz, M.; Litko-Rola, M.; Ginszt, A.; Rahnama, M.; Majcher, P. Cervical Myofascial Pain is Associated with an imbalance of Masticatory muscle activity. Int. J. Environ. Res. Public Health 2022, 19, 1577. [Google Scholar] [CrossRef] [PubMed]
- Zieliński, G.; Byś, A.; Szkutnik, J.; Majcher, P.; Ginszt, M. Electromyographic patterns of masticatory muscles in relation to active myofascial trigger points of the upper trapezius and temporomandibular disorders. Diagnostics 2021, 11, 580. [Google Scholar] [CrossRef]
- Bogduk, N. Anatomy and physiology of headache. Biomed. Pharmacother. 1995, 49, 435–445. [Google Scholar] [CrossRef]
- Ernst, M.J.; Crawford, R.J.; Schelldorfer, S.; Rausch-Osthoff, A.-K.; Barbero, M.; Kool, J.; Bauer, C.M. Extension and flexion in the upper cervical spine in neck pain patients. Man. Ther. 2015, 20, 547–552. [Google Scholar] [CrossRef]
- Gallego Izquierdo, T.; Pecos-Martin, D.; Lluch Girbes, E.; Plaza-Manzano, G.; Rodriguez Caldentey, R.; Mayor Melus, R.; Blanco Mariscal, D.; Falla, D. Comparison of cranio-cervical flexion training versus cervical proprioception training in patients with chronic neck pain: A randomized controlled clinical trial. J. Rehabil. Med. 2016, 48, 48–55. [Google Scholar] [CrossRef]
MCT Group | Control Group |
---|---|
1. Therapeutic massage (20 min) | 1. Therapeutic massage (20 min) |
|
|
2. Manual mobilization (20 min) | 2. Manual mobilization (20 min) |
|
|
3. Movement control exercise using a laser device (20 min) | 3. Self stretching (20 min) |
|
|
Variables | MCT (n = 10) | Control (n = 10) | t | p |
---|---|---|---|---|
Gender (male/female) | 2/8 | 3/7 | - | - |
Age (years) | 27.60 ± 3.40 | 25.00 ± 3.49 | −1.72 | 0.085 |
Height (cm) | 164.00 ± 6.32 | 164.6 ± 6.25 | −0.76 | 0.940 |
Body mass (kg) | 58.00 ± 9.91 | 59.20 ± 9.35 | −0.724 | 0.469 |
BMI (%) | 21.47 ± 2.58 | 21.77 ± 2.42 | −0.265 | 0.791 |
Group | Pre-Test | Post-Test | t | p | Post-Pre | t | p | ES | ||
---|---|---|---|---|---|---|---|---|---|---|
M ± SD | M ± SD | Mean Difference | ||||||||
FRT | ROM(L) | MCT | 24.97 ± 7.54 | 43.13 ± 1.99 | −8.00 | 0.000 * | 18.17 ± 7.14 | 2.33 | 0.032 * | 1.043 |
Control | 29.74 ± 6.74 | 38.53 ± 6.16 | −2.64 | 0.27 * | 8.79 ± 10.52 | |||||
ROM(R) | MCT | 20.27 ± 7.22 | 43.41 ± 2.57 | −10.28 | 0.000 * | 23.15 ± 7.08 | 3.30 | 0.004 * | 1.480 | |
Control | 25.95 ± 5.37 | 37.48 ± 5.50 | −4.26 | 0.002 * | 11.53 ± 8.55 | |||||
VAS(L) | MCT | 3.10 ± 1.37 | 0.93 ± 1.07 | 5.66 | 0.000 * | −2.17 ± 1.21 | −3.08 | 0.006 * | 1.382 | |
Control | 3.20 ± 1.39 | 2.47 ± 0.92 | 2.74 | 0.023 * | −0.73 ± 0.84 | |||||
VAS(R) | MCT | 4.20 ± 1.68 | 1.50 ± 1.52 | 4.97 | 0.001 * | −2.70 ± 1.71 | −2.74 | 0.013 * | 1.232 | |
Control | 3.40 ± 1.07 | 2.52 ± 0.79 | 2.31 | 0.046 * | −0.88 ± 1.20 | |||||
ROM | Flexion | MCT | 52.37 ± 9.42 | 62.66 ± 4.72 | −2.94 | 0.016 * | 10.28 ± 11.02 | 0.675 | 0.509 | 0.301 |
Control | 50.03 ± 3.08 | 57.47 ± 11.11 | −3.15 | 0.012 * | 7.44 ± 7.45 | |||||
Extension | MCT | 58.23 ± 11.26 | 69.47 ± 11.35 | −2.81 | 0.02 * | 11.25 ± 12.64 | 0.968 | 0.346 | 0.432 | |
Control | 57.23 ± 8.27 | 63.59 ± 11.16 | −2.08 | 0.067 | 6.38 ± 9.66 | |||||
Side bending(L) | MCT | 37.88 ± 3.30 | 44.96 ± 6.71 | −3.67 | 0.005 * | 7.09 ± 6.11 | 1.60 | 0.126 | 0.717 | |
Control | 40.98 ± 4.47 | 44.13 ± 3.34 | −2.08 | 0.067 | 3.16 ± 4.77 | |||||
Side bending(R) | MCT | 36.19 ± 3.93 | 40.47 ± 6.4 | −2.28 | 0.048 * | 4.27 ± 5.93 | 1.13 | 0.271 | 0.508 | |
Control | 38.87 ± 3.25 | 41.65 ± 1.64 | −1.55 | 0.154 | 1.77 ± 3.63 | |||||
Rotation(L) | MCT | 53.01 ± 5.48 | 71.90 ± 8.60 | −7.9 | 0.000 * | 18.88 ± 7.52 | 4.26 | 0.000 * | 1.909 | |
Control | 60.90 ± 3.63 | 66.70 ± 4.68 | −3.00 | 0.015 * | 5.79 ± 6.12 | |||||
Rotation(R) | MCT | 57.53 ± 6.06 | 71.63 ± 9.39 | −4.13 | 0.003 * | 14.10 ± 10.78 | 1.07 | 0.299 | 0.478 | |
Control | 58.97 ± 5.45 | 68.39 ± 7.65 | −3.26 | 0.007 * | 9.43 ± 8.61 |
Group | Pre-Test | Post-Test | t | p | Post-Pre | t | p | ES | ||
---|---|---|---|---|---|---|---|---|---|---|
M ± SD | M ± SD | Mean Difference | ||||||||
PPT | So(L) | MCT | 2.67 ± 1.38 | 4.69 ± 2.55 | −4.22 | 0.002 * | 2.04 ± 1.50 | 2.66 | 0.016 * | 1.193 |
Control | 2.04 ± 1.09 | 2.57 ± 0.90 | −1.89 | 0.91 | 0.56 ± 0.91 | |||||
So(R) | MCT | 2.11 ± 1.10 | 4.50 ± 2.35 | −4.43 | 0.002 * | 2.39 ± 1.70 | 2.91 | 0.009 * | 1.308 | |
Control | 2.01 ± 0.89 | 2.65 ± 0.71 | −0.08 | 0.029 * | 0.66 ± 0.78 | |||||
LS(L) | MCT | 4.12 ± 2.37 | 6.70 ± 4.01 | −3.60 | 0.006 * | 2.59 ± 2.25 | 2.99 | 0.008 * | 1.341 | |
Control | 3.41 ± 1.53 | 3.59 ± 1.57 | 0.66 | 0.642 | 0.18 ± 1.18 | |||||
LS(R) | MCT | 3.62 ± 2.37 | 5.38 ± 2.19 | −3.91 | 0.004 * | 1.76 ± 1.42 | 2.70 | 0.017 * | 1.211 | |
Control | 3.59 ± 1.57 | 3.66 ± 1.56 | 0.14 | 0.134 | 0.38 ± 0.76 | |||||
UT(L) | MCT | 3.10 ± 1.89 | 6.43 ± 2.70 | −6.79 | 0.000 * | 3.32 ± 1.54 | 3.31 | 0.004 * | 1.487 | |
Control | 2.84 ± 1.54 | 3.70 ± 2.60 | 0.40 | 0.157 | 0.86 ± 1.76 | |||||
UT(R) | MCT | 3.00 ± 2.13 | 5.38 ± 2.19 | −4.38 | 0.002 * | 2.38 ± 1.71 | 3.23 | 0.005 * | 1.454 | |
Control | 3.23 ± 1.44 | 3.66 ± 1.56 | 0.16 | 0.136 | 0.43 ± 0.82 | |||||
Sensory discrimination | MCT | 17.60 ± 2.83 | 20.9 ± 1.52 | −3.29 | 0.009 * | 3.30 ± 3.16 | 3.03 | 0.007 * | 1.361 | |
Control | 17.7 ± 2.00 | 17.7 ± 1.33 | 0.000 | 1.00 | 0.00 ± 1.33 |
Group | Pre-Test | Post-Test | t | p | Post-Pre | t | p | ES | |
---|---|---|---|---|---|---|---|---|---|
M ± SD | M ± SD | Mean Difference | |||||||
HIT-6 | MCT | 57.50 ± 2.54 | 44.40 ± 4.40 | 8.59 | 0.000 * | 13.10 ± 4.81 | −4.10 | 0.001 * | 1.835 |
Control | 55.80 ± 2.44 | 51.40 ± 4.90 | 2.97 | 0.015 * | 4.40 ± 4.67 | ||||
NDI | MCT | 11.60 ± 3.45 | 5.30 ± 2.75 | 5.84 | 0.000 * | 8.90 ± 4.01 | −2.81 | 0.011 * | 1.260 |
Control | 10.70 ± 3.40 | 7.00 ± 2.66 | 2.75 | 0.022 * | 3.70 ± 4.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, S.; Jung, J.; Moon, D. Impact of Movement Control Training Using a Laser Device on the Neck Pain and Movement of Patients with Cervicogenic Headache: A Pilot Study. Healthcare 2023, 11, 1439. https://doi.org/10.3390/healthcare11101439
Bae S, Jung J, Moon D. Impact of Movement Control Training Using a Laser Device on the Neck Pain and Movement of Patients with Cervicogenic Headache: A Pilot Study. Healthcare. 2023; 11(10):1439. https://doi.org/10.3390/healthcare11101439
Chicago/Turabian StyleBae, Songui, Juhyeon Jung, and Dongchul Moon. 2023. "Impact of Movement Control Training Using a Laser Device on the Neck Pain and Movement of Patients with Cervicogenic Headache: A Pilot Study" Healthcare 11, no. 10: 1439. https://doi.org/10.3390/healthcare11101439
APA StyleBae, S., Jung, J., & Moon, D. (2023). Impact of Movement Control Training Using a Laser Device on the Neck Pain and Movement of Patients with Cervicogenic Headache: A Pilot Study. Healthcare, 11(10), 1439. https://doi.org/10.3390/healthcare11101439