Impact of COVID-19 on Fracture Incidence in Germany: A Comparative Age and Gender Analysis of Pre- and Post-Outbreak Periods
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Migliorini, F.; Weber, C.D.; Pappalardo, G.; Schenker, H.; Hofmann, U.K.; Eschweiler, J.; Hildebrand, F. Orthopaedic, trauma surgery, and COVID-2019 pandemic: Clinical panorama and future prospective in Europe. Eur. J. Trauma Emerg. Surg. 2022, 48, 4385–4402. [Google Scholar] [CrossRef] [PubMed]
- Probert, A.C.; Sivakumar, B.S.; An, V.; Nicholls, S.L.; Shatrov, J.G.; Symes, M.J.; Ellis, A.M. Impact of COVID-19-related social restrictions on orthopaedic trauma in a level 1 trauma centre in Sydney: The first wave. ANZ J. Surg. 2021, 91, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Sugand, K.; Nathwani, D.; Bhattacharya, R.; Sarraf, K.M. Impact of the COVID-19 pandemic on orthopedic trauma workload in a London level 1 trauma center: The “golden month”. Acta Orthop. 2020, 91, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.S.H.; Cheung, K.M.C. Impact of COVID-19 on Orthopaedic and Trauma Service: An Epidemiological Study. J. Bone Joint Surg. Am. 2020, 102, e80. [Google Scholar] [CrossRef]
- Baron, J.A.; Barrett, J.A.; Karagas, M.R. The epidemiology of peripheral fractures. Bone 1996, 18 (Suppl. 1), S209–S213. [Google Scholar] [CrossRef]
- Greenhalgh, M.; Dupley, L.; Unsworth, R.; Boden, R. Where did all the trauma go? A rapid review of the demands on orthopaedic services at a UK Major Trauma Centre during the COVID-19 pandemic. Int. J. Clin. Pract. 2021, 75, e13690. [Google Scholar] [CrossRef]
- Scheer, R.C.; Newman, J.M.; Zhou, J.J.; Oommen, A.J.; Naziri, Q.; Shah, N.V.; Pascal, S.C.; Penny, G.S.; McKean, J.M.; Tsai, J.; et al. Ankle Fracture Epidemiology in the United States: Patient-Related Trends and Mechanisms of Injury. J. Foot Ankle Surg. 2020, 59, 479–483. [Google Scholar] [CrossRef]
- Schneider, F.; Runer, A.; Burkert, F.; Aspang, J.S.U.; Reider, S.; Schneider, H.; Pocecco, E. Digital Workout Versus Team Training: The Impact of the COVID-19 Pandemic on Athletes. Sports Med. Int. Open 2022, 6, E18–E24. [Google Scholar] [CrossRef]
- Chtourou, H.; Trabelsi, K.; H’mida, C.; Boukhris, O.; Glenn, J.M.; Brach, M.; Bentlage, E.; Bott, N.; Shephard, R.J.; Ammar, A. Staying physically active during the quarantine and self-isolation period for controlling and mitigating the COVID-19 pandemic: A systematic overview of the literature. Front. Psychol. 2020, 11, 1708. [Google Scholar] [CrossRef]
- Meyer, J.; McDowell, C.; Lansing, J.; Brower, C.; Smith, L.; Tully, M.; Herring, M. Changes in physical activity and sedentary behavior in response to COVID-19 and their associations with mental health in 3052 US adults. Int. J. Environ. Res. Public Health 2020, 17, 6469. [Google Scholar] [CrossRef]
- Shen, X.; MacDonald, M.; Logan, S.W.; Parkinson, C.; Gorrell, L.; Hatfield, B.E. Leisure Engagement during COVID-19 and Its Association with Mental Health and Wellbeing in U.S. Adults. Int. J. Environ. Res. Public Health 2022, 19, 1081. [Google Scholar] [CrossRef] [PubMed]
- Rydberg, E.M.; Möller, M.; Ekelund, J.; Wolf, O.; Wennergren, D. Does the COVID-19 pandemic affect ankle fracture incidence? Moderate decrease in Sweden. Acta Orthop. 2021, 92, 381–384. [Google Scholar] [CrossRef]
- Ghosh, S.; Aggarwal, S.; Kumar, V.; Patel, S.; Kumar, P. Epidemiology of pelvic fractures in adults: Our experience at a tertiary hospital. Chin. J. Traumatol. 2019, 22, 138–141. [Google Scholar] [CrossRef] [PubMed]
- Lange, R.H.; Hansen, S.T., Jr. Pelvic ring disruptions with symphysis pubis diastasis. Indications, technique, and limitations of anterior internal fixation. Clin. Orthop. Relat. Res. 1985, 201, 130–137. [Google Scholar] [CrossRef]
- Martinet, O.; Cordey, J.; Harder, Y.; Maier, A.; Bühler, M.; Barraud, G.E. The epidemiology of fractures of the distal femur. Injury 2000, 31, 62–94. [Google Scholar] [CrossRef]
- Valent, F. Road traffic accidents in Italy during COVID-19. Traffic Inj. Prev. 2022, 23, 193–197. [Google Scholar] [CrossRef]
- Kumar Jain, V.; Lal, H.; Kumar Patralekh, M.; Vaishya, R. Fracture management during COVID-19 pandemic: A systematic review. J. Clin. Orthop. Trauma 2020, 11, S431–S441. [Google Scholar] [CrossRef]
- Miranda, I.; Sangüesa-Nebot, M.J.; González, A.; Doménech, J. Impact of strict population confinement on fracture incidence during the COVID-19 pandemic. Experience from a public Health Care Department in Spain. J. Orthop. Sci. 2022, 27, 677–680. [Google Scholar] [CrossRef]
- Ogliari, G.; Lunt, E.; Ong, T.; Marshall, L.; Sahota, O. The impact of lockdown during the COVID-19 pandemic on osteoporotic fragility fractures: An observational study. Arch. Osteoporos. 2020, 15, 156. [Google Scholar] [CrossRef]
- de Souto Barreto, P.; Fabre, D.; Vellas, B.; Blain, H.; Molinier, L.; Rolland, Y. Reduction prevalence of fragility fracture hospitalisation during the COVID-19 lockdown. Arch. Osteoporos. 2022, 17, 68. [Google Scholar] [CrossRef]
- Ojeda-Thies, C.; Cuarental-García, J.; Ramos-Pascua, L.R. Decreased volume of hip fractures observed during COVID-19 lockdown. Eur. Geriatr. Med. 2021, 12, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Oulianski, M.; Rosinsky, P.J.; Fuhrmann, A.; Sokolov, R.; Arriola, R.; Lubovsky, O. Decrease in incidence of proximal femur fractures in the elderly population during the COVID-19 pandemic: A case–control study. BMC Musculoskelet. Disord. 2022, 23, 61. [Google Scholar] [CrossRef] [PubMed]
- Emaus, N.; Olsen, L.R.; Ahmed, L.A.; Balteskard, L.; Jacobsen, B.K.; Magnus, T.; Ytterstad, B. Hip fractures in a city in Northern Norway over 15 years: Time trends, seasonal variation and mortality: The Harstad Injury Prevention Study. Osteoporos. Int. 2011, 22, 2603–2610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vincentis, S.; Domenici, D.; Ansaloni, A.; Boselli, G.; D’Angelo, G.; Russo, A.; Taliani, E.; Rochira, V.; Simoni, M.; Madeo, B. COVID-19 lockdown negatively impacted on adherence to denosumab therapy: Incidence of non-traumatic fractures and role of telemedicine. J. Endocrinol. Investig. 2022, 45, 1887–1897. [Google Scholar] [CrossRef]
- Tsourdi, E.; Hofbauer, L.C.; Rauner, M. The Impact of COVID-19 in Bone Metabolism: Basic and Clinical Aspects. Horm. Metab. Res. 2022, 54, 540–548. [Google Scholar] [CrossRef]
- Awosanya, O.D.; Dalloul, C.E.; Blosser, R.J. Osteoclast-mediated bone loss observed in a COVID-19 mouse model. Bone 2022, 154, 116227. [Google Scholar] [CrossRef]
- Gawronska, K.; Lorkowski, J. Falls as One of the Atypical Presentations of COVID-19 in Older Population. Geriatr. Orthop. Surg. Rehabil. 2021, 12, 2151459321996619. [Google Scholar] [CrossRef]
- Hoffman, G.J.; Malani, P.N.; Solway, E.; Kirch, M.; Singer, D.C.; Kullgren, J.T. Changes in activity levels, physical functioning, and fall risk during the COVID-19 pandemic. J. Am. Geriatr. Soc. 2021, 70, 49–59. [Google Scholar] [CrossRef]
- Damasceno de Albuquerque Angelo, F.; de Souza Fonseca, F.; Quintella Farah, B.; Cappato de Araújo, R.; Remígio Cavalcante, B.; Barros Beltrão, N.; Pirauá, A.L.T. Changes in Physical Functioning and Fall-Related Factors in Older Adults Due to COVID-19 Social Isolation. Can. Geriatr. J. 2022, 25, 240–247. [Google Scholar] [CrossRef]
- Cunningham, C.; O’Sullivan, R.; Caserotti, P.; Tully, M.A. Consequences of physical inactivity in older adults: A systematic review of reviews and meta-analyses. Scand. J. Med. Sci. Sports 2020, 30, 816–827. [Google Scholar] [CrossRef]
- Araújo, R.S.; Matos, N.M.d.; Mariano, T.; Medved, I.; Santos, S.; Pinheiro, H.A. Functional capacity, risk of falling and chronic pain in older adults during the COVID-19 pandemic: A telemonitoring study. Geriatr. Gerontol. Aging 2021, 15, e0210065. [Google Scholar] [CrossRef]
- Ritter, A.L. The effect of social distancing due to the COVID-19 on adult and elderly exercises. Exerc. Soc. Distancing 2022, 35, 12. [Google Scholar]
Fracture Type | Change in the Mean Fracture Number Per Year for the COVID-19 Pre-Outbreak vs. Post-Outbreak Period | p-Value | ||
---|---|---|---|---|
Age | 18–64 | >65 | 18–64 | >65 |
Femoral neck | +4.02% | +10.59% | 0.24 | 0.03 |
Pertrochanteric | −2.21% | +9.68% | 0.24 | 0.05 |
Distal radius | −2.65% | −6.61 | 0.62 | 0.24 |
Proximal humerus | −4.48% | +0.25% | 0.03 | 0.91 |
Lumbal spine and pelvis | −15.32% * | −1.59% | <0.01 | 0.84 |
Fibula | −66.68% | −68.61% | 0.29 | 0.28 |
Cervical spine | −3.29% | +21.91% | 0.43 | 0.12 |
Humeral shaft | −11.53% * | +4.71% | <0.01 | 0.32 |
Subtrochanteric | +1.07% | +14.32% | 0.69 | 0.04 |
Femoral shaft | −19.21% * | +22.13% | <0.01 | 0.04 |
Clavicle | +2.24% | +16.59% | 0.73 | 0.18 |
Thoracic spine | −17.78% * | +2.02% | <0.01 | 0.79 |
Ribs | −12.62% * | −1.00% | <0.01 | 0.89 |
Proximal tibia | −6.70% * | +0.80% | <0.01 | 0.83 |
Cases Per Year (×1000) | Female 18–64 yr. | Female > 65 yr. | Male 18–64 yr. | Male > 65 yr. | ||||
---|---|---|---|---|---|---|---|---|
Pre-Outbreak | Post-Outbreak | Pre-Outbreak | Post-Outbreak | Pre-Outbreak | Post-Outbreak | Pre-Outbreak | Post-Outbreak | |
Femoral neck | ||||||||
mean (med) | 4.49 (4.47) | 4.69 (4.69) | 46.36 (46.39) | 50.00 (50.00) | 4.39 (4.37) | 4.56 (4.56) | 18.95 (19.01) | 23.04 (23.04) |
[min–max] | [4.26–4.86] | [4.66–4.71] | [43.81–49.81] | [49.67–50.33] | [4.1–4.64] | [4.54–4.59] | [16.2–22.36] | [22.43–23.65] |
Pertrochanteric | ||||||||
mean (med) | 2.24 (2.24) | 2.25 (2.25) | 45.77 (46.13) | 49.1 (49.1) | 3.64 (3.63) | 3.5 (3.5) | 15.97 (16.11) | 19.25 (19.25) |
[min–max] | [2.14–2.33] | [2.22–2.27] | [42.88–49.16] | [48.91–49.29] | [3.47–3.79] | [3.47–3.53] | [13.68–18.69] | [18.9–19.61] |
Distal radius | ||||||||
mean (med) | 23.86 (23.77) | 24.03 (24.03) | 42.69 (41.76) | 39.93 (39.93) | 13.06 (12.9) | 11.94 (11.94) | 4.98 (4.9) | 4.79 (4.79) |
[min–max] | [21.45–29.26] | [22.66–25.4] | [40.26–49.52] | [38.02–41.83] | [12.68–13.88] | [11.78–12.09] | [4.57–5.94] | [4.54–5.04] |
Proximal humerus | ||||||||
mean (med) | 10.08 (10.14) | 10.03 (10.03) | 34.67 (34.69) | 34.31 (34.31) | 6.88 (6.85) | 6.2 (6.2) | 7.73 (7.77) | 8.19 (8.19) |
[min–max] | [9.59–10.45] | [9.89–10.18] | [33.74–36.14] | [33.8–34.83] | [6.61–7.32] | [6.01–6.39] | [7.08–8.49] | [7.94–8.44] |
Lumbar spine and pelvis | ||||||||
mean (med) | 8.03 (8.06) | 7.01 (7.01) | 43.39 (44.36) | 41.55 (41.55) | 10.15 (10.18) | 8.76 (8.76) | 16.34 (16.63) | 17.25 (17.25) |
[min–max] | [7.64–8.28] | [6.93–7.09] | [36.68–47.49] | [41.11–41.99] | [9.75–10.35] | [8.59–8.92] | [13.42–18.73] | [17.21–17.29] |
Fibula | ||||||||
mean (med) | 17.91 (12.6) | 11.68 (11.68) | 12.24 (8.34) | 6.96 (6.96) | 18.35 (13.23) | 10.08 (10.08) | 5.16 (4.03) | 3.36 (3.36) |
[min–max] | [11.9–36.12] | [10.61–12.74] | [7.67–23.47] | [6.75–7.17] | [12.09–34.99] | [9.3–10.85] | [3.54–9.24] | [3.22–3.5] |
Rib | ||||||||
mean (med) | 3.01 (3.05) | 2.68 (2.68) | 12.6 (13.01) | 12.11 (12.11) | 9.56 (9.51) | 8.48 (8.48) | 10.98 (11.27) | 11.24 (11.24) |
[min–max] | [2.76–3.15] | [2.67–2.69] | [10.8–13.73] | [11.97–12.24] | [9.26–9.81] | [8.31–8.65] | [9.06–12.58] | [11.23–11.25] |
Thoracic spine | ||||||||
mean (med) | 3.62 (3.64) | 3.01 (3.01) | 13.25 (13.36) | 12.93 (12.93) | 4.81 (4.81) | 4.14 (4.14) | 4.79 (4.80) | 5.48 (5.48) |
[min–max] | [3.40–3.83] | [3.01–3.02] | [11.59–14.54] | [12.72–13.14] | [4.71–4.89] | [4.10–4.18] | [3.72–5.70] | [5.38–5.59] |
Clavicula | ||||||||
mean (med) | 3.45 (3.45) | 3.69 (3.69) | 2.4 (2.35) | 2.78 (2.78) | 13.28 (13.63) | 13.43 (13.43) | 1.67 (1.67) | 2.11 (2.11) |
[min–max] | [2.77–3.93] | [3.53–3.85] | [1.7–3.08] | [2.76–2.79] | [10.79–14.56] | [12.76–14.09] | [1.18–2.21] | [2.09–2.14] |
Proximal tibia | ||||||||
mean (med) | 5.82 (5.77) | 6.10 (6.10) | 5.26 (5.19) | 5.35 (5.35) | 5.89 (5.85) | 4.88 (4.88) | 1.56 (1.53) | 1.52 (1.52) |
[min–max] | [5.23–6.49] | [5.97–6.23] | [5–5.72] | [5.33–5.38] | [5.66–6.11] | [4.7–5.05] | [1.43–1.75] | [1.5–1.54] |
Femoral shaft | ||||||||
mean (med) | 1.15 (1.14) | 1.04 (1.04) | 6.71 (6.42) | 8.40 (8.40) | 2.36 (2.35) | 1.90 (1.90) | 2.00 (1.89) | 2.80 (2.80) |
[min–max] | [1.08–1.21] | [1.04–1.04] | [5.48–8.21] | [8.21–8.58] | [2.17–2.59] | [1.84–1.97] | [1.52–2.69] | [2.74–2.85] |
Subtrochanteric | ||||||||
mean (med) | 0.59 (0.59) | 0.65 (0.65) | 7.89 (7.7) | 8.89 (8.89) | 1.00 (0.98) | 0.95 (0.95) | 2.69 (2.63) | 3.46 (3.46) |
[min–max] | [0.54–0.65] | [0.62–0.68] | [7.2–8.86] | [8.88–8.9] | [0.95–1.06] | [0.91–1.00] | [2.2–3.34] | [3.4–3.52] |
Humeral shaft | ||||||||
mean (med) | 2.09 (2.10) | 1.98 (1.98) | 5.78 (5.8) | 6.04 (6.04) | 2.29 (2.26) | 1.94 (1.94) | 1.67 (1.64) | 1.79 (1.79) |
[min–max] | [2.01–2.15] | [1.93–2.03] | [5.38–6.39] | [5.96–6.11] | [2.11–2.55] | [1.86–2.03] | [1.46–1.9] | [1.78–1.79] |
Cervical spine | ||||||||
mean (med) | 0.78 (0.80) | 0.73 (0.73) | 3.72 (3.85) | 4.50 (4.50) | 2.02 (2.02) | 1.98 (1.98) | 2.92 (2.98) | 4.00 (4.00) |
[min–max] | [0.69–0.84] | [0.7–0.77] | [2.4–4.73] | [4.4–4.6] | [1.8–2.14] | [1.89–2.07] | [1.86–3.99] | [3.96–4.05] |
Cases Per Year (×1000) | All Genders >18 | Female 18–64 yr. | Female >65 yr. | Male 18–64 yr. | Male >65 yr. |
---|---|---|---|---|---|
Femoral neck | |||||
2018 and 2019 | 79.33 and 81.59 | 4.68 and 4.86 | 48.35 and 49.81 | 4.61 and 4.56 | 21.70 and 22.36 |
2020 and 2021 | 81.35 and 83.24 | 4.71 and 4.66 | 49.67 and 50.33 | 4.54 and 4.59 | 22.43 and 23.65 |
Pertrochanteric | |||||
2018 and 2019 | 71.89 and 73.8 | 2.32 and 2.33 | 47.88 and 49.16 | 3.62 and 3.62 | 18.06 and 18.69 |
2020 and 2021 | 73.51 and 74.69 | 2.22 and 2.27 | 48.91 and 49.29 | 3.47 and 3.53 | 18.90 and 19.61 |
Distal radius | |||||
2018 and 2019 | 84.10 and 82.16 | 23.86 and 23.37 | 41.84 and 41.05 | 13.44 and 12.83 | 4.95 and 4.91 |
2020 and 2021 | 77.31 and 84.06 | 22.66 and 25.40 | 38.02 and 41.83 | 12.09 and 11.78 | 4.54 and 5.04 |
Proximal humerus | |||||
2018 and 2019 | 60.28 and 61.67 | 10.22 and 10.24 | 35.33 and 36.14 | 6.61 and 6.80 | 8.11 and 8.49 |
2020 and 2021 | 58.01 and 59.45 | 9.89 and 10.18 | 33.80 and 34.83 | 6.39 and 6.01 | 7.94 and 8.44 |
Lumbar spine and pelvis | |||||
2018 and 2019 | 84.61 and 83.71 | 8.24 and 8.22 | 47.49 and 47.09 | 10.15 and 9.75 | 18.73 and 18.64 |
2020 and 2021 | 74.41 and 74.73 | 7.09 and 6.93 | 41.11 and 41.99 | 8.92 and 8.59 | 17.29 and 17.21 |
Fibula | |||||
2018 and 2019 | 36.38 and 35.70 | 12.18 and 12.04 | 8.11 and 7.67 | 12.33 and 12.09 | 3.76 and 3.92 |
2020 and 2021 | 29.88 and 34.26 | 10.61 and 12.74 | 6.75 and 7.17 | 9.30 and 10.85 | 3.22 and 3.50 |
Rib | |||||
2018 and 2019 | 38.75 and 38.92 | 3.08 and 3.1 | 13.54 and 13.73 | 9.69 and 9.5 | 12.44 and 12.58 |
2020 and 2021 | 34.79 and 34.21 | 2.67 and 2.69 | 12.24 and 11.97 | 8.65 and 8.31 | 11.23 and 11.25 |
Thoracic spine | |||||
2018 and 2019 | 28.43 and 28.50 | 3.66 and 3.53 | 14.31 and 14.54 | 4.85 and 4.73 | 5.62 and 5.70 |
2020 and 2021 | 25.28 and 25.85 | 3.01 and 3.02 | 12.72 and 13.14 | 4.18 and 4.10 | 5.38 and 5.59 |
Clavicula | |||||
2018 and 2019 | 23.38 and 23.62 | 3.84 and 3.93 | 2.89 and 3.08 | 14.56 and 14.39 | 2.09 and 2.21 |
2020 and 2021 | 22.79 and 21.21 | 3.85 and 3.53 | 2.76 and 2.79 | 14.09 and 12.76 | 2.09 and 2.14 |
Proximal tibia | |||||
2018 and 2019 | 19.22 and 19.62 | 6.28 and 6.49 | 5.60 and 5.72 | 5.70 and 5.66 | 1.63 and 1.75 |
2020 and 2021 | 18.19 and 17.50 | 6.23 and 5.97 | 5.38 and 5.33 | 5.05 and 4.70 | 1.54 and 1.50 |
Femoral shaft | |||||
2018 and 2019 | 13.91 and 14.15 | 1.13 and 1.08 | 7.94 and 8.21 | 2.29 and 2.17 | 2.55 and 2.69 |
2020 and 2021 | 13.96 and 14.31 | 1.04 and 1.04 | 8.21 and 8.58 | 1.97 and 1.84 | 2.74 and 2.85 |
Subtrochanteric | |||||
2018 and 2019 | 13.52 and 13.83 | 0.61 and 0.65 | 8.76 and 8.86 | 0.95 and 0.98 | 3.21 and 3.34 |
2020 and 2021 | 13.95 and 13.95 | 0.68 and 0.62 | 8.88 and 8.90 | 1.00 and 0.91 | 3.40 and 3.52 |
Humeral shaft | |||||
2018 and 2019 | 12.35 and 12.50 | 2.12 and 2.10 | 6.19 and 6.39 | 2.24 and 2.11 | 1.80 and 1.90 |
2020 and 2021 | 11.67 and 11.81 | 1.93 and 2.03 | 6.11 and 5.96 | 1.86 and 2.03 | 1.78 and 1.79 |
Cervical spine | |||||
2018 and 2019 | 11.35 and 11.56 | 0.84 and 0.80 | 4.55 and 4.73 | 2.14 and 2.04 | 3.82 and 3.99 |
2020 and 2021 | 11.19 and 11.24 | 0.77 and 0.70 | 4.40 and 4.60 | 2.07 and 1.89 | 3.96 and 4.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heinz, T.; Wild, M.; Eidmann, A.; Weißenberger, M.; Rak, D.; Nedopil, A.J.; Rudert, M.; Stratos, I. Impact of COVID-19 on Fracture Incidence in Germany: A Comparative Age and Gender Analysis of Pre- and Post-Outbreak Periods. Healthcare 2023, 11, 2139. https://doi.org/10.3390/healthcare11152139
Heinz T, Wild M, Eidmann A, Weißenberger M, Rak D, Nedopil AJ, Rudert M, Stratos I. Impact of COVID-19 on Fracture Incidence in Germany: A Comparative Age and Gender Analysis of Pre- and Post-Outbreak Periods. Healthcare. 2023; 11(15):2139. https://doi.org/10.3390/healthcare11152139
Chicago/Turabian StyleHeinz, Tizian, Moritz Wild, Annette Eidmann, Manuel Weißenberger, Dominik Rak, Alexander Johannes Nedopil, Maximilian Rudert, and Ioannis Stratos. 2023. "Impact of COVID-19 on Fracture Incidence in Germany: A Comparative Age and Gender Analysis of Pre- and Post-Outbreak Periods" Healthcare 11, no. 15: 2139. https://doi.org/10.3390/healthcare11152139
APA StyleHeinz, T., Wild, M., Eidmann, A., Weißenberger, M., Rak, D., Nedopil, A. J., Rudert, M., & Stratos, I. (2023). Impact of COVID-19 on Fracture Incidence in Germany: A Comparative Age and Gender Analysis of Pre- and Post-Outbreak Periods. Healthcare, 11(15), 2139. https://doi.org/10.3390/healthcare11152139