Infection Prevention Control Strategies of New Delhi Metallo-β-lactamase Producing Klebsiella pneumoniae
Abstract
:1. Introduction
2. Case Report
2.1. Setting
2.2. Clinical Details
2.3. Case Management
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cole, J. Antimicrobial resistance—A ‘rising tide’ of national (and international) risk. J. Hosp. Infect. 2016, 92, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Founou, R.C.; Founou, L.L.; Essack, S.Y. Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0189621. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- World Health Organization. New Report Calls for Urgent Action to Avert Antimicrobial Resistance Crisis. Available online: https://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis (accessed on 21 August 2023).
- WHO. WHO Implementation Handbook for National Action Plans on Antimicrobial Resistance: Guidance for the Human Health Sector; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Coppi, M.; Antonelli, A.; Niccolai, C.; Bartolini, A.; Bartolini, L.; Grazzini, M.; Mantengoli, E.; Farese, A.; Pieralli, F.; Mechi, M.T.; et al. Nosocomial outbreak by NDM-1-producing Klebsiella pneumoniae highly resistant to cefiderocol, Florence, Italy, Augustust 2021 to June 2022. Eurosurveillance 2022, 27, 2200795. [Google Scholar] [CrossRef] [PubMed]
- Dortet, L.; Poirel, L.; Nordmann, P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed. Res. Int. 2014, 2014, 249856. [Google Scholar] [CrossRef]
- Hornsey, M.; Phee, L.; Wareham, D.W. A novel variant, NDM-5, of the New Delhi metallo-β-lactamase in a multidrug-resistant Escherichia coli ST648 isolate recovered from a patient in the United Kingdom. Antimicrob. Agents Chemother. 2011, 55, 5952–5954. [Google Scholar] [CrossRef]
- Tavoschi, L.; Forni, S.; Porretta, A.; Righi, L.; Pieralli, F.; Menichetti, F.; Falcone, M.; Gemignani, G.; Sani, S.; Vivani, P.; et al. Prolonged outbreak of New Delhi metallo-beta-lactamase-producing carbapenem-resistant Enterobacterales (NDM-CRE), Tuscany, Italy, 2018 to 2019. Eurosurveillance 2020, 25, 2000085. [Google Scholar] [CrossRef]
- Ninci, A.; Grazzini, M.; Paolini, D.; Niccolini, F.; Mechi, M.T.; Righi, L.; Gemmi, F.; Pieralli, F.; Lorini, C.; Bonaccorsi, G. The management of NDM-β-lactamase-producing carbapenem-resistant Enterobacterales in Tuscany. Eur. J. Public Health 2020, 30, ckaa166.703. [Google Scholar] [CrossRef]
- AOU Sassari. Protocollo Operativo per la Sorveglianza e Gestione dei Pazienti con Colonizzazione/Infezione da Enterobacteriaceae CPE/CRE (Carbapenemase Producing Enterobacteriaceae/Carbapenem Resistant Enterobacteriaceae). Available online: https://www.aousassari.it/documenti/11_192_20160614154415.pdf (accessed on 21 August 2023).
- Sotgiu, G.; Are, B.; Pesapane, L.; Palmieri, A.; Muresu, N.; Cossu, A.; Dettori, M.; Azara, A.; Mura, I.; Cocuzza, C.; et al. Nosocomial transmission of carbapenem-resistant Klebsiella pneumoniae in an Italian university hospital: A molecular epidemiological study. J. Hosp. Infect. 2018, 99, 413–418. [Google Scholar] [CrossRef]
- Del Rio, A.; Muresu, N.; Sotgiu, G.; Saderi, L.; Sechi, I.; Cossu, A.; Usai, M.; Palmieri, A.; Are, B.M.; Deiana, G.; et al. High-Risk Clone of Klebsiella pneumoniae Co-Harbouring Class A and D Carbapenemases in Italy. Int. J. Environ. Res. Public Health 2022, 19, 2623. [Google Scholar] [CrossRef]
- bioMérieux. CHROMID® CARBA SMART. Selective Chromogenic Media for the Screening of Carbapenemase-Producing Enterobacteriaceae (CPE). Available online: http://www.biomerieux-culturemedia.com/product/99-chromid-carba-smart (accessed on 21 August 2023).
- bioMérieux. VITEK® 2. Automated Instrument for ID/AST Testing. Available online: https://www.biomerieux-diagnostics.com/vitekr-2-0 (accessed on 21 August 2023).
- Seegene. Allplex™ Entero-DR Assay. Available online: https://www.seegene.com/assays/allplex_entero_dr_assay (accessed on 21 August 2023).
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical Breakpoints and Dosing of Antibiotics. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 21 August 2023).
- World Health Organization. Infection Prevention and Control. Available online: https://www.who.int/health-topics/infection-prevention-and-control#tab=tab_1 (accessed on 21 August 2023).
- Centers for Disease Control and Prevention. Infection Control. Available online: https://www.cdc.gov/infectioncontrol/index.html (accessed on 21 August 2023).
- World Health Organization. WHO Guidelines on Hand Hygiene in Health Care. First Global Patient Safety Challenge Clean Care is Safer Care. Available online: https://apps.who.int/iris/bitstream/handle/10665/44102/9789241597906_eng.pdf?sequence=1 (accessed on 21 August 2023).
- Arzilli, G.; Scardina, G.; Casigliani, V.; Petri, D.; Porretta, A.; Moi, M.; Lucenteforte, E.; Rello, J.; Lopalco, P.; Baggiani, A.; et al. Screening for antimicrobial-resistant Gram-negative bacteria in hospitalised patients, and risk of progression from colonisation to infection: Systematic review. J. Infect. 2021, 84, 119–130. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 21 August 2023).
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. European Antimicrobial Resistance Surveillance Network (EARS-Net). Available online: https://www.ecdc.europa.eu/en/about-us/networks/disease-networks-and-laboratory-networks/ears-net-data (accessed on 21 August 2023).
- World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS). Available online: https://www.who.int/initiatives/glass (accessed on 21 August 2023).
- European Commision. A European One Health Action Plan against Antimicrobial Resistance (AMR). Available online: https://health.ec.europa.eu/system/files/2020-01/amr_2017_action-plan_0.pdf (accessed on 21 August 2023).
- Centers for Disease Control and Prevention. Antimicrobial Resistance. Available online: https://www.cdc.gov/drugresistance/index.html (accessed on 21 August 2023).
- Michael, C.A.; Dominey-Howes, D.; Labbate, M. The antimicrobial resistance crisis: Causes, consequences, and management. Front. Public Health 2014, 2, 145. [Google Scholar] [CrossRef] [PubMed]
- World Organisation for Animal Health. Antimicrobial Resistance. Available online: https://www.woah.org/en/what-we-do/global-initiatives/antimicrobial-resistance/ (accessed on 21 August 2023).
- Pokharel, S.; Shrestha, P.; Adhikari, B. Antimicrobial use in food animals and human health: Time to implement ‘One Health’ approach. Antimicrob. Resist. Infect. Control 2020, 9, 181. [Google Scholar] [CrossRef]
- The Medicines Utilisation Monitoring Centre. National Report on Antibiotics Use in Italy, Year 2021; Italian Medicines Agency: Rome, Italy, 2023; ISBN 979-12-80335-28-9.
- Gupta, N.; Limbago, B.M.; Patel, J.B.; Kallen, A.J. Carbapenem-resistant Enterobacteriaceae: Epidemiology and prevention. Clin. Infect. Dis. 2011, 53, 60–67. [Google Scholar] [CrossRef]
- Doi, Y.; Bonomo, R.A.; Hooper, D.C.; Kaye, K.S.; Johnson, J.R.; Clancy, C.J.; Thaden, J.T.; Stryjewski, M.E.; van Duin, D. Gram-Negative Committee of the Antibacterial Resistance Leadership Group (ARLG)a. Gram-Negative Bacterial Infections: Research Priorities, Accomplishments, and Future Directions of the Antibacterial Resistance Leadership Group. Clin. Infect. Dis. 2017, 64, S30–S35. [Google Scholar] [CrossRef]
- Buick, S.; Joffe, A.M.; Taylor, G.; Conly, J. A consensus development conference model for establishing health policy for surveillance and screening of antimicrobial-resistant organisms. Clin. Infect. Dis. 2014, 60, 1095–1101. [Google Scholar] [CrossRef]
- Karanika, S.; Paudel, S.; Grigoras, C.; Kalbasi, A.; Mylonakis, E. Systematic Review and Meta-analysis of Clinical and Economic Outcomes from the Implementation of Hospital-Based Antimicrobial Stewardship Programs. Antimicrob. Agents Chemother. 2016, 60, 4840–4852. [Google Scholar] [CrossRef]
- Schuts, E.C.; Hulscher, M.E.J.L.; Mouton, J.W.; Verduin, C.M.; Stuart, J.W.T.C.; Overdiek, H.W.P.M.; van der Linden, P.D.; Natsch, S.; Hertogh, C.M.P.M.; Wolfs, T.F.W.; et al. Current evidence on hospital antimicrobial stewardship objectives: A systematic review and meta-analysis. Lancet Infect. Dis. 2016, 16, 847–856. [Google Scholar] [CrossRef]
- Edmond, M.B.; Wenzel, R.P. Infection Prevention in the Health Care Setting. Mand. Douglas Bennett’s Princ. Pract. Infect. Dis. 2015, 2, 3286–3293.e1. [Google Scholar] [CrossRef]
- Wong, V.W.Y.; Huang, Y.; Wei, W.I.; Wong, S.Y.S.; Kwok, K.O. Approaches to multidrug-resistant organism prevention and control in long-term care facilities for older people: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2022, 11, 7. [Google Scholar] [CrossRef]
- WHO. Guidelines for the Prevention and Control of Carbapenem-Resistant Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa in Health Care Facilities; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Bhattacharya, S. Early diagnosis of resistant pathogens: How can it improve antimicrobial treatment? Virulence 2013, 4, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Saliba, R.; Aho-Glélé, L.-S.; Karam-Sarkis, D.; Zahar, J.-R. Evaluation of polymerase chain reaction assays for direct screening of carbapenemase-producing Enterobacteriaceae from rectal swabs: A diagnostic meta-analysis. J. Hosp. Infect. 2020, 104, 381–389. [Google Scholar] [CrossRef]
- Ambretti, S.; Bassetti, M.; Clerici, P.; Petrosillo, N.; Tumietto, F.; Viale, P.; Rossolini, G.M. Screening for carriage of carbapenem-resistant Enterobacteriaceae in settings of high endemicity: A position paper from an Italian working group on CRE infections. Antimicrob. Resist. Infect. Control 2019, 8, 136. [Google Scholar] [CrossRef] [PubMed]
- Boattini, M.; Bianco, G.; Comini, S.; Iannaccone, M.; Casale, R.; Cavallo, R.; Nordmann, P.; Costa, C. Direct detection of extended-spectrum-β-lactamase-producers in Enterobacterales from blood cultures: A comparative analysis. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.N.; Mohareb, A.M.; Hauser, N.; Abbara, A. Antimicrobial Resistance and Human Mobility. Infect. Drug Resist. 2022, 15, 127–133. [Google Scholar] [CrossRef]
- Arcilla, M.S.; van Hattem, J.M.; Haverkate, M.R.; Bootsma, M.C.J.; van Genderen, P.J.J.; Goorhuis, A.; Grobusch, M.P.; Lashof, A.M.O.; Molhoek, N.; Schultsz, C.; et al. Import and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae by international travellers (COMBAT study): A prospective, multicentre cohort study. Lancet Infect. Dis. 2017, 17, 78–85. [Google Scholar] [CrossRef]
- Yam, E.L.Y.; Hsu, L.Y.; Yap, E.P.-H.; Yeo, T.W.; Lee, V.; Schlundt, J.; Lwin, M.O.; Limmathurotsakul, D.; Jit, M.; Dedon, P.; et al. Antimicrobial Resistance in the Asia Pacific region: A meeting report. Antimicrob. Resist. Infect. Control 2019, 8, 202. [Google Scholar] [CrossRef]
- Bokhary, H.; Pangesti, K.N.A.; Rashid, H.; Abd El Ghany, M.; Hill-Cawthorne, G.A. Travel-Related Antimicrobial Resistance: A Systematic Review. Trop. Med. Infect. Dis. 2021, 6, 11. [Google Scholar] [CrossRef]
- Godijk, N.G.; Bootsma, M.C.J.; Bonten, M.J.M. Transmission routes of antibiotic resistant bacteria: A systematic review. BMC Infect. Dis. 2022, 22, 482. [Google Scholar] [CrossRef] [PubMed]
- Hassing, R.J.; Alsma, J.; Arcilla, M.S.; van Genderen, P.J.; Stricker, B.H.; Verbon, A. International travel and acquisition of multidrug-resistant Enterobacteriaceae: A systematic review. Eurosurveillance 2015, 20, 30074. [Google Scholar] [CrossRef] [PubMed]
- Muresu, N.; Sotgiu, G.; Are, B.M.; Cossu, A.; Cocuzza, C.; Martinelli, M.; Babudieri, S.; Are, R.; Dettori, M.; Azara, A.; et al. Travel-Related Typhoid Fever: Narrative Review of the Scientific Literature. Int. J. Environ. Res. Public Health 2020, 17, 615. [Google Scholar] [CrossRef]
- Kaspar, T.; Schweiger, A.; Droz, S.; Marschall, J. Colonization with resistant microorganisms in patients transferred from abroad: Who needs to be screened? Antimicrob. Resist. Infect. Control 2015, 4, 31. [Google Scholar] [CrossRef]
- Langford, B.; Schwartz, K. Bringing home unwelcome souvenirs: Travel and drug-resistant bacteria. Can. Commun. Dis. Rep. 2018, 44, 277–282. [Google Scholar] [CrossRef] [PubMed]
Antibiotics | Case 1 | Case 2 | ||
---|---|---|---|---|
M.I.C. | S/R | M.I.C. | S/R | |
Cefepime | ≥32 | R | ≥32 | R |
Cefotaxime | ≥64 | R | ≥64 | R |
Ceftazidime | ≥64 | R | ≥64 | R |
Ceftolozane/tazobactam | ≥32 | R | ≥32 | R |
Meropenem | ≥16 | R | ≥16 | R |
Imipenem | ≥16 | R | ≥16 | R |
Amikacin | 32 | R | 4 | S |
Amoxicillin/clavulanate | ≥32 | R | ≥32 | R |
Piperacillin/tazobactam | ≥128 | R | ≥128 | R |
Gentamicin | ≥16 | R | ≤1 | S |
Tobramycin | ≥16 | R | ≥16 | R |
Ciprofloxacin | ≥4 | R | ≥4 | R |
Trimethoprim/sulfamethoxazole | ≥320 | R | ≥160 | R |
Ceftazidime/avibactam | ≥16 | R | ≥16 | R |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muresu, N.; Deiana, G.; Dettori, M.; Palmieri, A.; Masia, M.D.; Cossu, A.; D’Avino, C.; Sechi, I.; Del Rio, A.; Piana, A.; et al. Infection Prevention Control Strategies of New Delhi Metallo-β-lactamase Producing Klebsiella pneumoniae. Healthcare 2023, 11, 2592. https://doi.org/10.3390/healthcare11182592
Muresu N, Deiana G, Dettori M, Palmieri A, Masia MD, Cossu A, D’Avino C, Sechi I, Del Rio A, Piana A, et al. Infection Prevention Control Strategies of New Delhi Metallo-β-lactamase Producing Klebsiella pneumoniae. Healthcare. 2023; 11(18):2592. https://doi.org/10.3390/healthcare11182592
Chicago/Turabian StyleMuresu, Narcisa, Giovanna Deiana, Marco Dettori, Alessandra Palmieri, Maria Dolores Masia, Andrea Cossu, Cristina D’Avino, Illari Sechi, Arcadia Del Rio, Andrea Piana, and et al. 2023. "Infection Prevention Control Strategies of New Delhi Metallo-β-lactamase Producing Klebsiella pneumoniae" Healthcare 11, no. 18: 2592. https://doi.org/10.3390/healthcare11182592