The Moderator Effect of Subthreshold Autistic Traits on the Relationship between Quality of Life and Internet Addiction
Abstract
:1. Introduction
Present Study
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Measures
2.4. Data Analyses
3. Results
3.1. Descriptive and Correlational Analyses
3.2. The Moderation Effect of SAT on the Relationship between QoL and IA
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dell’Osso, L.; Carmassi, C.; Cremone, I.M.; Muti, D.; Salerni, A.; Barberi, F.M.; Massimetti, E.; Gesi, C.; Politi, P.; Aguglia, E.; et al. Defining the optimal threshold scores for Adult Autism Subthreshold Spectrum (AdAS Spectrum) in clinical and general population. Clin. Pract. Epidemiol. Ment. Health 2020, 16, 204. [Google Scholar] [CrossRef]
- Donati, M.A.; Berrocal, C.; Primi, C.; Petracchi, G.; Carpita, B.; Cosci, F.; Ruiz, A.; Carmassi, C.; Dell’Osso, L. Measuring subthreshold autistic traits in the general population: Psychometric properties of the Adult Autism Subthreshold Spectrum (AdAS Spectrum) scale. Psychiatry Res. 2019, 281, 112576. [Google Scholar] [CrossRef] [PubMed]
- Robinson, E.B.; Koenen, K.C.; McCormick, M.C.; Munir, K.; Hallett, V.; Happé, F.; Plomin, R.; Ronald, A. Evidence that autistic traits show the same etiology in the general population and at the quantitative extremes (5%, 2.5%, and 1%). Arch. Gen. Psychiatry 2011, 68, 1113–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gökçen, E.; Petrides, K.V.; Hudry, K.; Frederickson, N.; Smillie, L.D. Sub-threshold autism traits: The role of trait emotional intelligence and cognitive flexibility. Br. J. Psychol. 2014, 105, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Best, C.; Arora, S.; Porter, F.; Doherty, M. The relationship between subthreshold autistic traits, ambiguous figure perception and divergent thinking. J. Autism. Dev. Disord. 2015, 45, 4064–4073. [Google Scholar] [CrossRef]
- Jobe, L.E.; White, S.W. Loneliness, social relationships, and a broader autism phenotype in college students. Pers. Individ. Dif. 2007, 42, 1479–1489. [Google Scholar] [CrossRef]
- Kanne, S.M.; Christ, S.E.; Reiersen, A.M. Psychiatric symptoms and psychosocial difficulties in young adults with autistic traits. J. Autism Dev. Disord. 2009, 39, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Bonfiglio, N.S.; Renati, R.; Costa, S.; Rollo, D.; Sulla, F.; Penna, M.P. An exploratory study on the relationship between video game addiction and the constructs of coping and resilience. In Proceedings of the 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Virtual, 1 June–1 July 2020. [Google Scholar]
- Concerto, C.; Rodolico, A.; Avanzato, C.; Fusar-Poli, L.; Signorelli, M.S.; Battaglia, F.; Aguglia, E. Autistic traits and attention-deficit hyperactivity disorder symptoms predict the severity of internet gaming disorder in an Italian adult population. Brain Sci. 2021, 11, 774. [Google Scholar] [CrossRef] [PubMed]
- Engelhardt, C.R.; Mazurek, M.O.; Sohl, K. Media use and sleep among boys with autism spectrum disorder, ADHD, or typical development. Pediatrics 2013, 132, 1081–1089. [Google Scholar] [CrossRef] [Green Version]
- Mazurek, M.O.; Shattuck, P.T.; Wagner, M.; Cooper, B.P. Prevalence and correlates of screen-based media use among youths with autism spectrum disorders. J. Autism Dev. Disord. 2012, 42, 1757–1767. [Google Scholar] [CrossRef]
- Craig, F.; Tenuta, F.; De Giacomo, A.; Trabacca, A.; Costabile, A. A systematic review of problematic video-game use in people with Autism Spectrum Disorders. Res. Autism Spectr. Disord. 2021, 82, 101726. [Google Scholar] [CrossRef]
- Hirota, T.; Takahashi, M.; Adachi, M.; Sakamoto, Y.; Nakamura, K. Neurodevelopmental traits and longitudinal transition patterns in internet addiction: A 2-year prospective study. J. Autism Dev. Disord. 2021, 51, 1365–1374. [Google Scholar] [CrossRef]
- Masaeli, N.; Farhadi, H. Prevalence of Internet-based addictive behaviors during COVID-19 pandemic: A systematic review. J. Addict. Dis. 2021, 39, 468–488. [Google Scholar] [CrossRef]
- Gupta, A.; Khan, A.M.; Rajoura, O.P.; Srivastava, S. Internet addiction and its mental health correlates among undergraduate college students of a university in North India. J. Family Med. Prim. Care 2018, 7, 721. [Google Scholar] [CrossRef] [PubMed]
- Tomczyk, Ł.; Lizde, E.S. Nomophobia and Phubbing: Wellbeing and new media education in the family among adolescents in Bosnia and Herzegovina. Child. Youth Serv. Rev. 2022, 137, 106489. [Google Scholar] [CrossRef]
- Young, K. The evolution of internet addiction disorder. In Internet Addiction. Studies in Neuroscience, Psychology and Behavioral Economics; Montag, C., Reuter, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 3–18. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- Musetti, A.; Corsano, P.; Boursier, V.; Schimmenti, A. Problematic Internet use in lonely adolescents: The mediating role of detachment from parents. Clin. Neuropsychiatry 2020, 17, 3–10. [Google Scholar] [CrossRef]
- Servidio, R. Assessing the psychometric properties of the Internet Addiction Test: A study on a sample of Italian university students. Comput. Hum. Behav. 2017, 68, 17–29. [Google Scholar] [CrossRef]
- Fioravanti, G.; Casale, S.; Benucci, S.B.; Prostamo, A.; Falone, A.; Ricca, V.; Rotella, F. Fear of missing out and social networking sites use and abuse: A meta-analysis. Comput. Hum. Behav. 2021, 122, 106839. [Google Scholar] [CrossRef]
- Limone, P.; Toto, G.A. Psychological and Emotional Effects of Digital Technology on Digitods (14–18 Years): A Systematic Review. Front. Psychol. 2022, 13, 938965. [Google Scholar] [CrossRef]
- Varona, M.N.; Muela, A.; Machimbarrena, J.M. Problematic use or addiction? A scoping review on conceptual and operational definitions of negative social networking sites use in adolescents. Addict Behav. 2022, 134, 107400. [Google Scholar] [CrossRef] [PubMed]
- Fioravanti, G.; Flett, G.; Hewitt, P.; Rugai, L.; Casale, S. How maladaptive cognitions contribute to the development of problematic social media use. Addict. Behav. Rep. 2020, 11, 100267. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Z.; Griffiths, M.D. Problematic Social Networking Site Use and Comorbid Psychiatric Disorders: A Systematic Review of Recent Large-Scale Studies. Front. Psychiatry 2018, 9, 686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machimbarrena, J.M.; González-Cabrera, J.; Ortega-Barón, J.; Beranuy-Fargues, M.; Álvarez-Bardón, A.; Tejero, B. Profiles of problematic internet use and its impact on adolescents’ health-related quality of life. Int. J. Environ. Res. Public Health 2019, 16, 3877. [Google Scholar] [CrossRef] [Green Version]
- Schivinski, B.; Brzozowska-Woś, M.; Stansbury, E.; Satel, J.; Montag, C.; Pontes, H.M. Exploring the role of social media use motives, psychological well-being, self-esteem, and affect in problematic social media use. Front. Psychol. 2020, 11, 617140. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.J.; Lin, I.M.; Fan, S.Y. Methodological issues in measuring health-related quality of life. Tzu Chi Med. J. 2013, 25, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Rajmil, L. Gender and self-perceived health in childhood and adolescence in Spain. Gac. Sanit. 2009, 23, 433–439. [Google Scholar] [CrossRef] [Green Version]
- Sulla, F.; Pasetti, A.; Dall’Olio, I. Processi di tipizzazione di genere in famiglie con genitori migranti e a rischio di povertà educativa: un’esperienza formativa condotta nell’ambito del Progetto “Ali per il Futuro” [Gender-typing processes in migrant families and at risk of educational poverty]. Rief 2022, 20, 33–46. [Google Scholar] [CrossRef]
- Elias, H.; Ping, W.S.; Abdullah, M.C. Stress and academic achievement among undergraduate students in Universiti Putra Malaysia. Soc. Behav. Sci. 2011, 29, 646–655. [Google Scholar] [CrossRef] [Green Version]
- Posselt, J.R.; Lipson, S.K. Competition, anxiety, and depression in the college classroom: Variations by student identity and field of study. J. Coll. Stud. Dev. 2016, 57, 973–989. [Google Scholar] [CrossRef]
- Odriozola-González, P.; Planchuelo-Gómez, Á.; Irurtia, M.J.; de Luis-García, R. Psychological effects of the COVID-19 outbreak and lockdown among students and workers of a Spanish university. Psychiatry Res. 2020, 290, 113108. [Google Scholar] [CrossRef]
- Lipson, S.K.; Zhou, S.; Wagner, B.; Beck, K.; Eisenberg, D. Major differences: Variations in undergraduate and graduate student mental health and treatment utilization across academic disciplines. J. College Stud. Psychother. 2016, 30, 23–41. [Google Scholar] [CrossRef]
- Koo, H.J.; Kwon, J.H. Risk and protective factors of internet addiction: A meta-analysis of empirical studies in Korea. Yonsei Med. J. 2014, 55, 1691–1711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, L.N.; Pereira, L.N.; da Fé Brás, M.; Ilchuk, K. Quality of life under the COVID-19 quarantine. Qual Life Res. 2021, 30, 1389–1405. [Google Scholar] [CrossRef]
- Limone, P.; Toto, G.A. Factors that predispose undergraduates to mental issues: A cumulative literature review for future research perspectives. Front. Public Health 2022, 10, 831349. [Google Scholar] [CrossRef] [PubMed]
- Fatehi, F.; Monajemi, A.; Sadeghi, A.; Mojtahedzadeh, R.; Mirzazadeh, A. Quality of life in medical students with internet addiction. Acta Med. Iran. 2016, 54, 662–666. [Google Scholar]
- Chern, K.C.; Huang, J.H. Internet addiction: Associated with lower health-related quality of life among college students in Taiwan, and in what aspects? Comput. Hum. Behav. 2018, 84, 460–466. [Google Scholar] [CrossRef]
- Dell’Osso, L.; Bertelloni, C.A.; Di Paolo, M.; Avella, M.T.; Carpita, B.; Gori, F.; Pompili, M.; Carmassi, C. Problematic internet use in university students attending three superior graduate schools in italy: Is autism spectrum related to suicide risk? Int. J. Environ. Res. Public Health 2019, 16, 1098. [Google Scholar] [CrossRef] [Green Version]
- Varni, J.W.; Limbers, C.A. The PedsQLTM 4.0 generic core scales young adult version: Feasibility, reliability and validity in a university student population. J. Health Psychol. 2009, 14, 611–622. [Google Scholar] [CrossRef]
- Varni, J.W.; Seid, M.; Kurtin, P.S. PedsQLTM 4.0: Reliability and Validity of the Pediatric Quality of Life InventoryTM Version 4.0 Generic Core Scales in Healthy and Patient Populations. Med. Care 2001, 39, 800–812. [Google Scholar] [CrossRef]
- Young, K.S. Internet Addiction: The Emergence of a New Clinical Disorder. Cyberpsychol. Behav. 1998, 1, 237–244. [Google Scholar] [CrossRef]
- Servidio, R.; Bartolo, M.G.; Palermiti, A.L.; Casas, J.A.; Ruiz, R.O.; Costabile, A. Internet addiction, self-esteem and the validation of the Italian version of the Internet Related Experiences Questionnaire. Eur. Rev. Appl. Psychol. 2019, 69, 51–58. [Google Scholar] [CrossRef]
- Laconi, S.; Rodgers, R.F.; Chabrol, H. The measurement of Internet addiction: A critical review of existing scales and their psychometric properties. Comput. Hum. Behav. 2014, 41, 190–202. [Google Scholar] [CrossRef]
- Baron-Cohen, S.; Wheelwright, S.; Skinner, R.; Martin, J.; Clubley, E. The autism spectrum quotient (AQ): Evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J. Autism Dev. Disord. 2001, 31, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Ruta, L.; Mazzone, D.; Mazzone, L.; Wheelwright, S.; Baron-Cohen, S. The Autism-Spectrum Quotient—Italian version: A cross-cultural confirmation of the broader autism phenotype. J. Autism Dev. Disord. 2012, 42, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Baron-Cohen, S.; Hoekstra, R.A.; Knickmeyer, R.; Wheelwright, S. The autism-spectrum quotient (AQ)—Adolescent version. J. Autism Dev. Disord. 2006, 36, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Wheelwright, S.; Baron-Cohen, S.; Goldenfeld, N.; Delaney, J.; Fine, D.; Smith, R.; Weila, L.; Wakabayashic, A. Predicting autism spectrum quotient (AQ) from the systemizing quotient-revised (SQ-R) and empathy quotient (EQ). Brain Res. 2006, 1079, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, A.; Baron-Cohen, S.; Wheelwright, S.; Tojo, Y. The autism-spectrum quotient (AQ) in Japan: A cross- cultural comparison. J. Autism Dev. Disord. 2006, 36, 263–270. [Google Scholar] [CrossRef]
- Frederick, G.M.; Bub, K.L.; Boudreaux, B.D.; O’Connor, P.J.; Schmidt, M.D.; Evans, E.M. Associations among sleep quality, sedentary behavior, physical activity, and feelings of energy and fatigue differ for male and female college students. Fatigue 2022, 10, 40–53. [Google Scholar] [CrossRef]
- Alghamdi, A.N.; Alotaibi, M.I.; Alqahtani, A.S.; Al Aboud, D.; Abdel-Moneim, A.S. BNT162b2 and ChAdOx1 SARS-CoV-2 post-vaccination side-effects among Saudi vaccinees. Front. Med. 2021, 1796, 760047. [Google Scholar] [CrossRef]
- Muhaidat, N.; Alshrouf, M.A.; Azzam, M.I.; Karam, A.M.; Al-Nazer, M.W.; Al-Ani, A. Menstrual symptoms after COVID-19 vaccine: A cross-sectional investigation in the MENA region. Int. J. Womens Health 2022, 14, 395. [Google Scholar] [CrossRef]
- de las Cuevas, P.; García-Arenas, M.; Rico, N. Why Not STEM? A Study Case on the Influence of Gender Factors on Students’ Higher Education Choice. Mathematics 2022, 10, 239. [Google Scholar] [CrossRef]
- Gillespie-Lynch, K.; Kapp, S.K.; Shane-Simpson, C.; Smith, D.S.; Hutman, T. Intersections between the autism spectrum and the internet: Perceived benefits and preferred functions of computer-mediated communication. Intellect. Dev. Disabil. 2014, 52, 456–469. [Google Scholar] [CrossRef] [PubMed]
- Sallafranque-St-Louis, F.; Normand, C.L. From solitude to solicitation: How people with intellectual disability or autism spectrum disorder use the internet. Cyberpsychology 2017, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- Shpigelman, C.-N.; Gill, C.J. How do adults with intellectual disabilities use Facebook? Disabil. Soc. 2014, 29, 1601–1616. [Google Scholar] [CrossRef]
Male Students (n = 35) | Female Students (n = 106) | ||||||
---|---|---|---|---|---|---|---|
Variables | Mean (SD) | Range | Mean (SD) | Range | U | p | |
Quality of life (PedsQLTM) | Physical functioning | 615.03 (138.47) | 201–775 | 572.41 (131.97) | 100–800 | 1365.00 | 0.019 |
Emotional functioning | 291.43 (112.78) | 75–500 | 244.81 (116.89) | 0–450 | 1467.00 | 0.063 | |
Social functioning | 74.14 (34.18) | 2–102 | 83.13 (23.35) | 27–102 | 1661.00 | 0.315 | |
School/work activities | 140.71 (36.92) | 50–200 | 144.81 (35.64) | 50–200 | 1772.50 | 0.687 | |
Total score | 1121.31 (266.24) | 428–1527 | 1045.16 (237.54) | 327–1527 | 1472.00 | 0.067 | |
Internet addiction (IAT) | 42.00 (9.29) | 24–57 | 42.72 (11.66) | 21–70 | 1817.00 | 0.858 | |
Sub-threshold autistic traits (AQ) | 18.89 (5.17) | 10–30 | 18.63 (6.27) | 7–34 | 1772.00 | 0.692 |
Students Studying in Sciences/Economics (n = 65) | Students Studying in Humanities (n = 76) | ||||||
---|---|---|---|---|---|---|---|
Variables | Mean (SD) | Range | Mean (SD) | Range | U | p | |
Quality of life (PedsQLTM) | Physical functioning | 623.86 (122.90) | 200–775 | 556.58 (138.89) | 10–800 | 1800.50 | 0.005 |
Emotional functioning | 282.69 (113.79) | 50–500 | 233.88 (116.17) | 0–450 | 1910.50 | 0.020 | |
Social functioning | 81.23 (28.84) | 2–102 | 80.62 (24.73) | 27–102 | 2339.00 | 0.557 | |
School/work activities | 144.23 (31.80) | 50–200 | 143.42 (39.24) | 50–200 | 2465.50 | 0.985 | |
Total score | 1122.02 (236.14) | 428–1527 | 1041.50 (245.31) | 327–1402 | 1854.00 | 0.011 | |
Internet addiction (IAT) | 41.63 (9.85) | 24–57 | 43.32 (12.07) | 21–70 | 2337.50 | 0.583 | |
Sub-threshold autistic traits (AQ) | 18.75 (5.39) | 10–30 | 18.64 (6.51) | 7–34 | 2384.50 | 0.723 |
Internet Addiction (IAT) | ||
---|---|---|
rs | ||
Quality of life (PedsQLTM subscales) | Physical functioning | −406 ** |
Emotional functioning | −468 ** | |
Social functioning | −362 ** | |
School/work activities | −380 ** | |
Total score | −550 ** | |
Sub-threshold autistic traits (AQ) | −283 ** |
Dep: IAT N = 141 | B (SE) | 95% Wald CI (LLCI–ULCI) | Wald Chi2 | O.R. | |
---|---|---|---|---|---|
Main effect | |||||
QoL | −0.001 (0.001) | −0.002–0.001 | 19.43 ** | 0.999 | |
SATs | −0.027 (0.015) | −0.056–0.003 | 3.21 | 0.947 | |
Interaction effect | |||||
QoL by SATs | 0.000031 (0.000013) | 0.000005–0.000057 | 5.281 * | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulla, F.; Camia, M.; Scorza, M.; Giovagnoli, S.; Padovani, R.; Benassi, E. The Moderator Effect of Subthreshold Autistic Traits on the Relationship between Quality of Life and Internet Addiction. Healthcare 2023, 11, 186. https://doi.org/10.3390/healthcare11020186
Sulla F, Camia M, Scorza M, Giovagnoli S, Padovani R, Benassi E. The Moderator Effect of Subthreshold Autistic Traits on the Relationship between Quality of Life and Internet Addiction. Healthcare. 2023; 11(2):186. https://doi.org/10.3390/healthcare11020186
Chicago/Turabian StyleSulla, Francesco, Michela Camia, Maristella Scorza, Sara Giovagnoli, Roberto Padovani, and Erika Benassi. 2023. "The Moderator Effect of Subthreshold Autistic Traits on the Relationship between Quality of Life and Internet Addiction" Healthcare 11, no. 2: 186. https://doi.org/10.3390/healthcare11020186
APA StyleSulla, F., Camia, M., Scorza, M., Giovagnoli, S., Padovani, R., & Benassi, E. (2023). The Moderator Effect of Subthreshold Autistic Traits on the Relationship between Quality of Life and Internet Addiction. Healthcare, 11(2), 186. https://doi.org/10.3390/healthcare11020186