Empowering Healthcare through Precision Medicine: Unveiling the Nexus of Social Factors and Trust
Abstract
:1. Introduction
1.1. Theoretical Background
1.2. Hypothesis Development
1.3. Performance Expectancy
1.4. Social Influence
1.5. Social Media Influences
1.6. Trust as a Moderator
1.7. Trust as a Mediator
2. Methods
Measures
3. Results
4. Discussion
4.1. Theoretical Implications
4.2. Practical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xue, Y.; Lameijer, E.-W.; Ye, K.; Zhang, K.; Chang, S.; Wang, X.; Wu, J.; Gao, G.; Zhao, F.; Li, J. Precision medicine: What challenges are we facing? Genom. Proteom. Bioinform. 2016, 14, 253. [Google Scholar] [CrossRef] [PubMed]
- Collins, F.S.; Varmus, H. A New initiative on precision medicine. N. Engl. J. Med. 2015, 372, 793–795. [Google Scholar] [CrossRef] [PubMed]
- König, I.R.; Fuchs, O.; Hansen, G.; von Mutius, E.; Kopp, M.V. What is precision medicine? Eur. Respir. J. 2017, 50, 1700391. [Google Scholar] [CrossRef] [PubMed]
- Lysaght, T.; Ballantyne, A.; Toh, H.J.; Lau, A.; Ong, S.; Schaefer, O.; Shiraishi, M.; Boom, W.v.D.; Xafis, V.; Tai, E.S. Trust and trade-offs in sharing data for precision medicine: A national survey of Singapore. J. Pers. Med. 2021, 11, 921. [Google Scholar] [CrossRef] [PubMed]
- Jameson, J.L.; Longo, D.L. Precision medicine—Personalized, problematic, and promising. Obstet. Gynecol. Surv. 2015, 70, 612–614. [Google Scholar] [CrossRef]
- O’Shea, R.; Ma, A.S.; Jamieson, R.V.; Rankin, N.M. Precision medicine in Australia: Now is the time to get it right. Med. J. Aust. 2022, 217, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Canedo, J.R.; Wilkins, C.H.; Senft, N.; Romero, A.; Bonnet, K.; Schlundt, D. Barriers and facilitators to dissemination and adoption of precision medicine among Hispanics/Latinos. BMC Public Health 2020, 20, 603. [Google Scholar] [CrossRef]
- Ramaswami, R.; Bayer, R.; Galea, S. Precision medicine from a public health perspective. Annu. Rev. Public Health 2018, 39, 153–168. [Google Scholar] [CrossRef]
- Adams, S.A.; Petersen, C. Precision medicine: Opportunities, possibilities, and challenges for patients and providers. J. Am. Med. Inform. Assoc. 2016, 23, 787–790. [Google Scholar] [CrossRef]
- Levine, R.S.; Rust, G.S.; Pisu, M.; Agboto, V.; Baltrus, P.A.; Briggs, N.C.; Zoorob, R.; Juarez, P.; Hull, P.C.; Goldzweig, I.; et al. Increased Black–White disparities in mortality after the introduction of lifesaving innovations: A possible consequence of US federal laws. Am. J. Public Health 2010, 100, 2176–2184. [Google Scholar] [CrossRef]
- Garavand, A.; Mohseni, M.; Asadi, H.; Etemadi, M.; Moradi-Joo, M.; Moosavi, A. Factors influencing the adoption of health information technologies: A systematic review. Electron. Physician 2016, 8, 2713–2718. [Google Scholar] [CrossRef] [PubMed]
- A De Leeuw, J.; Woltjer, H.; Kool, R.B. Identification of factors influencing the adoption of health information technology by nurses who are digitally lagging: In-depth interview study. J. Med. Internet Res. 2020, 22, e15630. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.L.; Chan, F.K.Y.; Hu, P.J.-H.; Brown, S.A. Extending the two-stage information systems continuance model: Incorporating UTAUT predictors and the role of context. Inf. Syst. J. 2011, 21, 527–555. [Google Scholar] [CrossRef]
- Ward, P.S.; Pede, V.O. Capturing social network effects in technology adoption: The spatial diffusion of hybrid rice in Bangladesh. Aust. J. Agric. Resour. Econ. 2015, 59, 225–241. [Google Scholar] [CrossRef]
- Venkatesh, V.; Davis, F.D. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef]
- Aronson, S.J.; Rehm, H.L. Building the foundation for genomics in precision medicine. Nature 2015, 526, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Ballantyne, A.; Lysaght, T.; Toh, H.J.; Ong, S.; Lau, A.; Schaefer, G.O.; Xafis, V.; Tai, E.S.; Newson, A.J.; Carter, S.; et al. Sharing precision medicine data with private industry: Outcomes of a citizens’ jury in Singapore. Big Data Soc. 2022, 9. [Google Scholar] [CrossRef]
- Chakravarthy, R.; Stallings, S.C.; Williams, M.; Hollister, M.; Davidson, M.; Canedo, J.; Wilkins, C.H. Factors influencing precision medicine knowledge and attitudes. PLoS ONE 2020, 15, e0234833. [Google Scholar] [CrossRef]
- Liao, W.-L.; Tsai, F.-J. Personalized medicine: A paradigm shift in healthcare. BioMedicine 2013, 3, 66–72. [Google Scholar] [CrossRef]
- Subramanian, M.; Wojtusciszyn, A.; Favre, L.; Boughorbel, S.; Shan, J.; Letaief, K.B.; Pitteloud, N.; Chouchane, L. Precision medicine in the era of artificial intelligence: Implications in chronic disease management. J. Transl. Med. 2020, 18, 472. [Google Scholar] [CrossRef] [PubMed]
- Khoury, M.J.; Gwinn, M.L.; Glasgow, R.E.; Kramer, B.S. A population approach to precision medicine. Am. J. Prev. Med. 2012, 42, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, A.; Díaz-Martín, A.M.; Guillén, M.J.Y. Modifying UTAUT2 for a cross-country comparison of telemedicine adoption. Comput. Hum. Behav. 2022, 130, 107183. [Google Scholar] [CrossRef] [PubMed]
- Hassan, I.B.; Murad, M.A.A.; El-Shekeil, I.; Liu, J. Extending the UTAUT2 model with a privacy calculus model to enhance the adoption of a health information application in Malaysia. Informatics 2022, 9, 31. [Google Scholar] [CrossRef]
- Bianchi, C.; Tuzovic, S.; Kuppelwieser, V.G. Investigating the drivers of wearable technology adoption for healthcare in South America. Inf. Technol. People 2023, 36, 916–939. [Google Scholar] [CrossRef]
- Haverila, M.J.; McLaughlin, C.; Haverila, K. The impact of social influence on perceived usefulness and behavioral intentions in the usage of non-pharmaceutical interventions (NPIs). Int. J. Health Manag. 2023, 16, 145–156. [Google Scholar] [CrossRef]
- Kavandi, H.; Jaana, M. Factors that affect health information technology adoption by seniors: A systematic review. Health Soc. Care Community 2020, 28, 1827–1842. [Google Scholar] [CrossRef]
- Kaplan, A.M.; Haenlein, M. Users of the world, unite! The challenges and opportunities of Social Media. Bus. Horiz. 2010, 53, 59–68. [Google Scholar] [CrossRef]
- Pianese, T.; Belfiore, P. Exploring the social networks’ use in the health-care industry: A multi-level analysis. Int. J. Environ. Res. Public Health 2021, 18, 7295. [Google Scholar] [CrossRef]
- Fergie, G.; Hunt, K.; Hilton, S. Social media as a space for support: Young adults’ perspectives on producing and consuming user-generated content about diabetes and mental health. Soc. Sci. Med. 2016, 170, 46–54. [Google Scholar] [CrossRef]
- Kent, R. Self-tracking health over time: From the use of Instagram to perform optimal health to the protective shield of the digital detox. Soc. Media Soc. 2020, 6. [Google Scholar] [CrossRef]
- Yang, Q. Are social networking sites making health behavior change interventions more effective? A meta-analytic review. J. Health Commun. 2017, 22, 223–233. [Google Scholar] [CrossRef]
- Centola, D. Social media and the science of health behavior. Circulation 2013, 127, 2135–2144. [Google Scholar] [CrossRef] [PubMed]
- Sussman, S.W.; Siegal, W.S. Informational influence in organizations: An integrated approach to knowledge adoption. Inf. Syst. Res. 2003, 14, 47–65. [Google Scholar] [CrossRef]
- Dhagarra, D.; Goswami, M.; Kumar, G. Impact of trust and privacy concerns on technology acceptance in healthcare: An Indian per-spective. Int. J. Med. Inform. 2020, 141, 104164. [Google Scholar] [CrossRef]
- Dang, B.N.; Westbrook, R.A.; Njue, S.M.; Giordano, T.P. Building trust and rapport early in the new doctor-patient relationship: A longitudinal qualitative study. BMC Med. Educ. 2017, 17, 32. [Google Scholar] [CrossRef] [PubMed]
- Lanseng, E.J.; Andreassen, T.W. Electronic healthcare: A study of people’s readiness and attitude toward performing self-diagnosis. Int. J. Serv. Ind. Manag. 2007, 18, 394–417. [Google Scholar] [CrossRef]
- Liu, J.Y.W.; Sorwar, G.; Rahman, M.S.; Hoque, R. The role of trust and habit in the adoption of mHealth by older adults in Hong Kong: A healthcare technology service acceptance (HTSA) model. BMC Geriatr. 2023, 23, 73. [Google Scholar] [CrossRef] [PubMed]
- Fox, G.; Connolly, R. Mobile health technology adoption across generations: Narrowing the digital divide. Inf. Syst. J. 2018, 28, 995–1019. [Google Scholar] [CrossRef]
- Shayo, H.J.; Rao, C.; Kakupa, P. Conceptualization and measurement of trust in home–school contexts: A scoping review. Front. Psychol. 2021, 12, 742917. [Google Scholar] [CrossRef]
- Kamarudin, S.; Omar, S.Z.; Zaremohzzabieh, Z.; Bolong, J.; Osman, M.N. Factors predicting the adoption of e-government services in telecenters in rural areas: The mediating role of trust. Asia-Pac. Soc. Sci. Rev. 2021, 21, 20–38. [Google Scholar]
- Kassim, E.S.; Jailani, S.F.A.K.; Hairuddin, H.; Zamzuri, N.H. Information system acceptance and user satisfaction: The mediating role of trust. Procedia-Soc. Behav. Sci. 2012, 57, 412–418. [Google Scholar] [CrossRef]
- Khan, I.; Abu Saleh, M.; Quazi, A. Social media adoption by health professionals: A TAM-based study. Informatics 2021, 8, 6. [Google Scholar] [CrossRef]
- Vetsch, J.; Wakefield, C.E.; Techakesari, P.; Warby, M.; Ziegler, D.; O’Brien, T.; Drinkwater, C.; Neeman, N.; Tucker, K. Healthcare professionals’ attitudes toward cancer precision medicine: A systematic review. Semin. Oncol. 2019, 46, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.C.; Tu, Y.F.; Hwang, G.J.; Huang, H. From precision education to precision medicine. Educ. Technol. Soc. 2021, 24, 123–137. [Google Scholar]
- Wang, X.; Liu, Y.; Liu, H. Examining users’ adoption of precision medicine: The moderating role of medical technical knowledge. Int. J. Environ. Res. Public Health 2020, 17, 1113. [Google Scholar] [CrossRef]
- Iftikhar, R.; Abaalkhail, B. Health-seeking influence reflected by online health-related messages received on social media: Cross-sectional survey. J. Med. Internet Res. 2017, 19, e382. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Streiner, D.L. Building a better model: An introduction to structural equation modelling. Can. J. Psychiatry 2006, 51, 317–324. [Google Scholar] [CrossRef]
- Barrett, P. Structural equation modelling: Adjudging model fit. Pers. Individ. Differ. 2007, 42, 815–824. [Google Scholar] [CrossRef]
- Harris, M.T.; Rogers, W.A. Developing a healthcare technology acceptance model (H-TAM) for older adults with hypertension. Ageing Soc. 2023, 43, 814–834. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Correa, P.; Grandón, E.E.; Ramírez-Santana, M.; Arenas-Gaitán, J.; Rondán-Cataluña, F.J. Explaining the Consumption Technology Acceptance in the Elderly Post-Pandemic: Effort Expectancy Does Not Matter. Behav. Sci. 2023, 13, 87. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Mohammadnezhad, M.; Ward, P. Trust and communication in a doctor-patient relationship: A literature review. J. Health Commun. 2018, 3, 36. [Google Scholar] [CrossRef]
- Petrocchi, S.; Iannello, P.; Lecciso, F.; Levante, A.; Antonietti, A.; Schulz, P. Interpersonal trust in doctor-patient relation: Evidence from dyadic analysis and association with quality of dyadic communication. Soc. Sci. Med. 2019, 235, 112391. [Google Scholar] [CrossRef] [PubMed]
- Nabi, N.U.; Zohora, F.T.; Misbauddin, S. Social media links with social capital to trust in healthcare facilities: Empirical evidence from Bangladesh. Libr. Hi Tech 2023, 41, 210–228. [Google Scholar] [CrossRef]
- Kanchan, S.; Gaidhane, A. Social Media Role and Its Impact on Public Health: A Narrative Review. Cureus 2023, 15, e33737. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.-J.; Fullerton, S.M.; Saperstein, A.; Shim, J.K. Ethics of inclusion: Cultivate trust in precision medicine. Science 2019, 364, 941–942. [Google Scholar] [CrossRef] [PubMed]
- Gu, D.; Khan, S.; Khan, I.U.; Khan, S.U.; Xie, Y.; Li, X.; Zhang, G. Assessing the adoption of e-health technology in a developing country: An extension of the UTAUT model. SAGE Open 2021, 11. [Google Scholar] [CrossRef]
- Kijsanayotin, B.; Pannarunothai, S.; Speedie, S.M. Factors influencing health information technology adoption in Thailand’s community health centers: Applying the UTAUT model. Int. J. Med. Inform. 2009, 78, 404–416. [Google Scholar] [CrossRef]
- Rouidi, M.; Elouadi, A.E.; Hamdoune, A.; Choujtani, K.; Chati, A. TAM-UTAUT and the acceptance of remote healthcare technologies by healthcare professionals: A systematic review. Inform. Med. Unlocked 2022, 32, 101008. [Google Scholar] [CrossRef]
- Lee, Y.-Y.; Lin, J.L. How much does trust really matter? A study of the longitudinal effects of trust and decision-making preferences on diabetic patient outcomes. Patient Educ. Couns. 2011, 85, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Birkhäuer, J.; Gaab, J.; Kossowsky, J.; Hasler, S.; Krummenacher, P.; Werner, C.; Gerger, H. Trust in the health care professional and health outcome: A meta-analysis. PLoS ONE 2017, 12, e0170988. [Google Scholar] [CrossRef] [PubMed]
- Mogaka, J.J.O.; Chimbari, M.J. The mediating effects of public genomic knowledge in precision medicine implementation: A structural equation model approach. PLoS ONE 2020, 15, e0240585. [Google Scholar] [CrossRef] [PubMed]
1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|
Performance expectancy | 1 | ||||
Social Influence | 0.311 ** | 1 | |||
Social media influence | 0.118 * | 0.510 ** | 1 | ||
Trust | 0.276 ** | 0.438 ** | 0.304 ** | 1 | |
PM Acceptance | 0.676 ** | 0.468 ** | 0.289 ** | 0.357 ** | 1 |
Path | Estimate | S.E. | C.R. | p | ||
---|---|---|---|---|---|---|
Social Media Influence | → | PM Acceptance | 0.036 | 0.033 | 1.088 | 0.27 |
Social Influence | → | PM Acceptance | 0.250 | 0.058 | 4.319 | *** |
Performance expectancy | → | PM Acceptance | 0.716 | 0.065 | 10.938 | *** |
Trust x Performance Expectancy | → | PM Acceptance | −0.0523 | 0.0565 | −0.9260 | 0.35 |
Trust x Social Media Influence | → | PM Acceptance | −0.123 | 0.0416 | −2.9632 | 0.00 |
Trust x Social Influence | → | PM Acceptance | −0.0977 | 0.0441 | −2.2145 | 0.02 |
Path | Estimate | S.E. | C.R. | p | ||
---|---|---|---|---|---|---|
Social Media Influence | → | Trust | 0.118 | 0.028 | 2.160 | 0.031 |
Social Influence | → | Trust | 0.328 | 0.040 | 5.763 | *** |
Performance expectancy | → | Trust | 0.160 | 0.040 | 3.256 | *** |
Trust | → | PM Acceptance | 0.357 | 0.065 | 7.211 | *** |
Indirect effect | ||||||
Social Media Influence > PM Acceptance (Indirect Effect through Trust) | 0.042 | 0.015 | 2.81 | 0.242 | ||
Social Influence > PM Acceptance (Indirect Effect through Trust) | 0.117 | 0.012 | 9.76 | *** | ||
Performance Expectancy > PM Acceptance (Indirect Effect through Trust) | 0.057 | 0.018 | 3.17 | 0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, B.T.N.; Khan, M.I.; Saleh, M.A.; Wangchuk, D.; Talukder, M.J.H.; Kinght-Agarwal, C.R. Empowering Healthcare through Precision Medicine: Unveiling the Nexus of Social Factors and Trust. Healthcare 2023, 11, 3177. https://doi.org/10.3390/healthcare11243177
Tan BTN, Khan MI, Saleh MA, Wangchuk D, Talukder MJH, Kinght-Agarwal CR. Empowering Healthcare through Precision Medicine: Unveiling the Nexus of Social Factors and Trust. Healthcare. 2023; 11(24):3177. https://doi.org/10.3390/healthcare11243177
Chicago/Turabian StyleTan, Bian Ted Nicholas, Md. Irfanuzzaman Khan, Md. Abu Saleh, Dawa Wangchuk, Md. Jakir Hasan Talukder, and Catherine R. Kinght-Agarwal. 2023. "Empowering Healthcare through Precision Medicine: Unveiling the Nexus of Social Factors and Trust" Healthcare 11, no. 24: 3177. https://doi.org/10.3390/healthcare11243177
APA StyleTan, B. T. N., Khan, M. I., Saleh, M. A., Wangchuk, D., Talukder, M. J. H., & Kinght-Agarwal, C. R. (2023). Empowering Healthcare through Precision Medicine: Unveiling the Nexus of Social Factors and Trust. Healthcare, 11(24), 3177. https://doi.org/10.3390/healthcare11243177