Effects of Simulated Visual Impairment Conditions on Movement and Anxiety during Gap Crossing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Environment
2.3. Experimental Procedure
2.4. Data Acquisition, Data Processing, and Analysis
2.5. Statistical Analysis
3. Results
3.1. The Effects of Visual Conditions to Movement during Gap Crossing
3.2. The Effects of Visual Conditions to Anxiety
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bourne, R.R.A.; Flaxman, S.R.; Braithwaite, T.; Cicinelli, M.V.; Das, A.; Jonas, J.B.; Keeffe, J.; Kempen, J.H.; Leasher, J.; Limburg, H.; et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: A systematic review and meta-analysis. Lancet Glob. Health 2017, 5, e888–e897. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The right to sight: An analysis for the global burden of disease study. Lancet Glob. Health 2021, 9, e144–e160. [Google Scholar] [CrossRef] [PubMed]
- Flaxman, S.R.; Bourne, R.R.A.; Resnikoff, S.; Ackland, P.; Braithwaite, T.; Cicinelli, M.V.; Das, A.; Jonas, J.B.; Keeffe, J.; Kempen, J.H.; et al. Global causes of blindness and distance vision impairment 1990–2020: A systematic review and meta-analysis. Lancet Glob. Health 2017, 5, e1221–e1234. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.P.; Ramke, J.; Cairns, J.; Butt, T.; Zhang, J.H.; Jones, I.; Jovic, M.; Nandakumar, A.; Faal, H.; Taylor, H.; et al. The economics of vision impairment and its leading causes: A systematic review. EClinicalMedicine 2022, 46, 101354. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Trends in prevalence of blindness and distance and near vision impairment over 30 years: An analysis for the global burden of disease study. Lancet Glob. Health 2021, 9, e130–e143. [Google Scholar] [CrossRef] [PubMed]
- Virgili, G.; Rubin, G. Orientation and mobility training for adults with low vision. Cochrane Database Syst. Rev. 2010, 5, 1–23. [Google Scholar] [CrossRef]
- Lord, S.R. Visual risk factors for falls in older people. Proc. Age Ageing 2006, 35, ii42–ii45. [Google Scholar] [CrossRef]
- Coleman, A.L.; Stone, K.; Ewing, S.K.; Nevitt, M.; Cummings, S.; Cauley, J.A.; Ensrud, K.E.; Harris, E.L.; Hochberg, M.C.; Mangione, C.M. Higher risk of multiple falls among elderly women who lose visual acuity. Ophthalmology 2004, 111, 857–862. [Google Scholar] [CrossRef]
- Ivers, R.Q.; Norton, R.; Cumming, R.G.; Butler, M.; Campbell, A.J. Visual impairment and risk of hip fracture. Am. J. Epidemiol. 2000, 152, 633–639. [Google Scholar] [CrossRef]
- De Boer, M.R.; Pluijm, S.M.F.; Lips, P.; Moll, A.C.; Völker-Dieben, H.J.; Deeg, D.J.H.; Van Rens, G.H.M.B. Different aspects of visual impairment as risk factors for falls and fractures in older men and women. J. Bone Min. Res. 2004, 19, 1539–1547. [Google Scholar] [CrossRef]
- Daniels, K.A.J.; Burn, J.F. Human locomotion over obstacles reveals real-time prediction of energy expenditure for optimized decision-making. Proc. R. Soc. B Biol. Sci. 2023, 290, 20230200. [Google Scholar] [CrossRef] [PubMed]
- Weirich, G.; Bemben, D.A.; Bemben, M.G. Predictors of balance in young, middle-aged, and late middle-aged women. J. Geriatr. Phys. Ther. 2010, 33, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Wiszomirska, I.; Kaczmarczyk, K.; Błazkiewicz, M.; Wit, A. The impact of a vestibular-stimulating exercise regime on postural stability in people with visual impairment. BioMed Res. Int. 2015, 2015, 136969. [Google Scholar] [CrossRef] [PubMed]
- Urbaniak-Olejnik, M.; Loba, W.; Stieler, O.; Komar, D.; Majewska, A.; Marcinkowska-Gapińska, A.; Jan-Jezierska, D.H. Body Balance Analysis in the Visually Impaired Individuals aged 18–24 years. Int. J. Environ. Res. Public Health 2022, 19, 14383. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.; Nardone, A.; De Nunzio, A.M.; Schmid, M.; Schieppati, M. Equilibrium during static and dynamic tasks in blind subjects: No evidence of cross-modal plasticity. Brain 2007, 130, 2097–2107. [Google Scholar] [CrossRef] [PubMed]
- Timmis, M.A.; Scarfe, A.C.; Pardhan, S. How does the extent of central visual field loss affect adaptive gait? Gait Posture 2016, 44, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Timmis, M.A.; Scarfe, A.C.; Tabrett, D.R.; Pardhan, S. Kinematic analysis of step ascent among patients with central visual field loss. Gait Posture 2014, 39, 252–257. [Google Scholar] [CrossRef]
- Shaheen, A.F.; Sourlas, A.; Horton, K.; McLean, C.; Ewins, D.; Gould, D.; Ghoussayni, S. Effects of lighting Il-luminance levels on stair negotiation performance in individuals with visual impairment. J. Electromyogr. Kinesiol. 2018, 39, 8–15. [Google Scholar] [CrossRef]
- Ramulu, P.Y.; Van Landingham, S.W.; Massof, R.W.; Chan, E.S.; Ferrucci, L.; Friedman, D.S. Fear of falling and visual field loss from glaucoma. Ophthalmology 2012, 119, 1352–1358. [Google Scholar] [CrossRef]
- Wang, M.Y.; Rousseau, J.; Boisjoly, H.; Schmaltz, H.; Kergoat, M.J.; Moghadaszadeh, S.; Djafari, F.; Freeman, E.E. Activity limitation due to a fear of falling in older adults with eye disease. Invest. Ophthalmol. Vis. Sci. 2012, 53, 7967–7972. [Google Scholar] [CrossRef]
- Nguyen, A.M.; Arora, K.S.; Swenor, B.K.; Friedman, D.S.; Ramulu, P.Y. Physical activity restriction in age-related eye disease: A cross-sectional study exploring fear of falling as a potential mediator. BMC Geriatr. 2015, 15, 64. [Google Scholar] [CrossRef]
- Popescu, M.L.; Boisjoly, H.; Schmaltz, H.; Kergoat, M.J.; Rousseau, J.; Moghadaszadeh, S.; Djafari, F.; Freeman, E.E. Age-related eye disease and mobility limitations in older adults. Investig. Ophthalmol. Vis. Sci. 2011, 52, 7168–7174. [Google Scholar] [CrossRef] [PubMed]
- Elias, L.J.; Bryden, M.P.; Bulman-Fleming, M.B. Footedness is a better predictor than is handedness of emotional lateralization. Neuropsychologia 1998, 36, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Zsido, A.N.; Teleki, S.A.; Csokasi, K.; Rozsa, S.; Bandi, S.A. Development of the short version of the Spielberger State—Trait anxiety inventory. Psychiatry Res. 2020, 291, 113223. [Google Scholar] [CrossRef] [PubMed]
- Hallemans, A.; Ortibus, E.; Meire, F.; Aerts, P. Low vision affects dynamic stability of gait. Gait Posture 2010, 32, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Larson, A.M.; Loschky, L.C. The Contributions of Central versus peripheral Vision to Scene Gist Recognition. J. Vis. 2009, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Vater, C.; Wolfe, B.; Rosenholtz, R. Peripheral vision in real-world tasks: A systematic review. Psychon. Bull. Rev. 2022, 29, 1531–1557. [Google Scholar] [CrossRef]
- Costela, F.M.; Pesudovs, K.; Sandberg, M.A.; Weigel-Difranco, C.; Woods, R.L. Validation of a vision-related activity scale for patients with retinitis pigmentosa. Health Qual. Life Outcomes 2020, 18, 196. [Google Scholar] [CrossRef]
- Authié, C.N.; Berthoz, A.; Sahel, J.A.; Safran, A.B. Adaptive gaze strategies for locomotion with constricted visual field. Front. Hum. Neurosci. 2017, 11, 387. [Google Scholar] [CrossRef]
- Black, A.; Lovie-Kitchin, J.E.; Woods, R.L.; Arnold, N.; Byrnes, J.; Murrish, J. Mobility performance with retinitis pigmentosa. Clin. Exp. Optom. 1997, 80, 1–12. [Google Scholar] [CrossRef]
- van Rheede, J.J.; Wilson, I.R.; Qian, R.I.; Downes, S.M.; Kennard, C.; Hicks, S.L. Improving mobility performance in low vision with a distance-based representation of the visual scene. Investig. Ophthalmol. Vis. Sci. 2015, 56, 4802–4809. [Google Scholar] [CrossRef] [PubMed]
- Graci, V.; Elliott, D.B.; Buckley, J.G. Utility of peripheral visual cues in planning and controlling adaptive gait. Optom. Vis. Sci. 2010, 87, 21–27. [Google Scholar] [CrossRef]
- Buckley, J.G.; Panesar, G.K.; MacLellan, M.J.; Pacey, I.E.; Barrett, B.T. Changes to control of adaptive gait in individuals with long-standing reduced stereoacuity. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2487–2495. [Google Scholar] [CrossRef]
- Timmis, M.A.; Pardhan, S. Patients with central visual field loss adopt a cautious gait strategy during tasks that present a high risk of falling. Investig. Ophthalmol. Vis. Sci. 2012, 53, 4120–4129. [Google Scholar] [CrossRef]
- Spielberger, C.D. Notes and comments trait-state anxiety and motor behavior. J. Mot. Behav. 1971, 3, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Adkin, A.L.; Carpenter, M.G. New insights on emotional contributions to human postural control. Front. Neurol. 2018, 9, 789. [Google Scholar] [CrossRef] [PubMed]
- Lelard, T.; Stins, J.; Mouras, H. Postural responses to emotional visual stimuli. Neurophysiol. Clin. 2019, 49, 109–114. [Google Scholar] [CrossRef]
- Ehgoetz Martens, K.A.; Ellard, C.G.; Almeida, Q.J.; Gait, A.-P. Changes are selectively do-pa-responsive in Parkinson’s disease. Eur. J. Neurosci. 2015, 42, 2028–2035. [Google Scholar] [CrossRef]
- Patino, C.M.; Varma, R.; Azen, S.P.; Conti, D.V.; Nichol, M.B.; McKean-Cowdin, R.; Los Angeles Latino Eye Study Group. The impact of change in visual field on health-related quality of life: The Los Angeles latino eye study. Ophthalmology 2011, 118, 1310–1317. [Google Scholar] [CrossRef]
- McKean-Cowdin, R.; Wang, Y.; Wu, J.; Azen, S.P.; Varma, R.; Los Angeles Latino Eye Study Group. Impact of visual field loss on health-related quality of life in glaucoma. The Los Angeles latino eye study. Ophthalmology 2008, 115, 941–948.e1. [Google Scholar] [CrossRef]
- Medeiros, F.A.; Gracitelli, C.P.B.; Boer, E.R.; Weinreb, R.N.; Zangwill, L.M.; Rosen, P.N. Longitudinal changes in quality of life and rates of progressive visual field loss in glaucoma patients. Ophthalmology 2015, 122, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Otori, Y.; Takahashi, G.; Urashima, M.; Kuwayama, Y.; Quality of Life Improvement Committee. Evaluating the quality of life of glaucoma patients using the State–Trait Anxiety Inventory. J. Glaucoma 2017, 26, 1025–1029. [Google Scholar] [CrossRef] [PubMed]
- Gage, W.H.; Sleik, R.J.; Polych, M.A.; McKenzie, N.C.; Brown, L.A. The allocation of attention during locomotion is altered by anxiety. Exp. Brain Res. 2003, 150, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.A.; Doan, J.B.; McKenzie, N.C.; Cooper, S.A.; Gait, A.-M. Adaptations reduce errors of Ob-stacle negotiation among younger and older adults: Implications for fall risk. Gait Posture 2006, 24, 418–423. [Google Scholar] [CrossRef]
Characteristics Data | Participants (n = 15) | Male (n = 8) | Female (n = 7) |
---|---|---|---|
Age (year) | 22.9 ± 1.3 | 22.4 ± 0.9 | 23.4 ± 1.6 |
Mass (kg) | 61.6 ± 10.2 | 65.2 ± 8.2 | 55.0 ± 8.4 |
Height (m) | 1.69 ± 0.09 | 1.77 ± 0.04 | 1.61 ± 0.05 |
BMI (kg/m2) | 21.5 ± 2.7 | 21.7 ± 3.3 | 21.2 ± 2.1 |
* Leg length (cm) | 86.7 ± 6.7 | 91.6 ± 4.7 | 82.3 ± 6.0 |
STAIT-5 (mean) | 13.6 ± 1.9 | 13.8 ± 2.5 | 13.4 ± 1.0 |
Item No. | Statements | Not at All | Somewhat | Moderately So | Very Much So |
---|---|---|---|---|---|
1 | I feel upset | 1 | 2 | 3 | 4 |
2 | I feel frightened | 1 | 2 | 3 | 4 |
3 | I feel nervous | 1 | 2 | 3 | 4 |
4 | I am jittery | 1 | 2 | 3 | 4 |
5 | I feel confused | 1 | 2 | 3 | 4 |
Item No. | Statements | Not at All | Somewhat | Moderately So | Very Much So |
---|---|---|---|---|---|
1 | I feel that difficulties are piling up so that I cannot overcome them. | 1 | 2 | 3 | 4 |
2 | I worry too much over something that really does not matter. | 1 | 2 | 3 | 4 |
3 | Some unimportant thoughts run through my mind and bothers me. | 1 | 2 | 3 | 4 |
4 | I take disappointments so keenly that I cannot put them out of my mind. | 1 | 2 | 3 | 4 |
5 | I get in a state of tension or turmoil as I think over my recent concerns and interests. | 1 | 2 | 3 | 4 |
Platform | Item No. | V1 | V2 | V3 | V4 | F | p-Value |
---|---|---|---|---|---|---|---|
0 cm | 1 | 1 ± 0 | 1.27 ± 0.46 | 1.27 ± 0.46 | 1.93 ± 0.89 | 7.93 | ** V1 < V4, ** V2 < V4, ** V3 < V4 |
2 | 1 ± 0 | 1.67 ± 0.62 | 1.53 ± 0.64 | 2.33 ± 0.82 | 12.38 | * V1 < V2, ** V1 < V4, * V2 < V4, ** V3 < V4 | |
3 | 1 ± 0 | 1.33 ± 0.62 | 1.6 ± 0.91 | 1.73 ± 0.7 | 3.69 | * V1 < V4 | |
4 | 1 ± 0 | 1.13 ± 0.35 | 1.2 ± 0.41 | 1.33 ± 0.82 | 1.2 | ns | |
5 | 1 ± 0 | 1.53 ± 0.83 | 1.53 ± 0.64 | 2 ± 0.93 | 5.11 | ** V1 < V4 | |
Total | 5 ± 0 | 6.93 ± 2.25 | 7.13 ± 2.56 | 9.33 ± 3.06 | 8.98 | ** V1 < V4, * V2 < V4 | |
−15 cm | 1 | 1 ± 0 | 1.27 ± 0.46 | 1.33 ± 0.49 | 2.2 ± 1.15 | 9.22 | ** V1 < V4, ** V2 < V4, ** V3 < V4 |
2 | 1 ± 0 | 1.53 ± 0.64 | 1.93 ± 0.8 | 3 ± 0.76 | 26.57 | ** V1 < V3, ** V1 < V4, ** V2 < V4, ** V3 < V4 | |
3 | 1 ± 0 | 1.07 ± 0.26 | 1.53 ± 0.99 | 2.13 ± 0.99 | 8.11 | ** V1 < V4, ** V2 < V4 | |
4 | 1 ± 0 | 1 ± 0 | 1.2 ± 0.56 | 1.4 ± 0.83 | 2.2 | ns | |
5 | 1.07 ± 0.26 | 1.4 ± 0.51 | 1.87 ± 0.99 | 2.53 ± 1.06 | 9.98 | * V1 < V3, ** V1 < V4, ** V2 < V4 | |
Total | 5.07 ± 0.26 | 6.27 ± 1.28 | 7.87 ± 3.16 | 11.23 ± 3.24 | 19.58 | ** V1 < V4, * V1 < V3 | |
+15 cm | 1 | 1 ± 0 | 1.27 ± 0.46 | 1.4 ± 0.51 | 2.33 ± 1.11 | 11.84 | ** V1 < V4, ** V2 < V4, ** V3 < V4 |
2 | 1 ± 0 | 1.6 ± 0.51 | 1.87 ± 0.74 | 2.87 ± 0.83 | 24.16 | ** V1 < V3, ** V1 < V4, ** V2 < V4, ** V3 < V4 | |
3 | 1 ± 0 | 1.2 ± 0.41 | 1.67 ± 0.82 | 2.13 ± 0.92 | 9.17 | * V1 < V3, ** V1 < V4, ** V2 < V4 | |
4 | 1 ± 0 | 1.1 ± 0.26 | 1.27 ± 0.59 | 1.27 ± 0.46 | 1.8 | ns | |
5 | 1 ± 0 | 1.6 ± 0.74 | 2 ± 0.93 | 2.53 ± 1.06 | 9.96 | ** V1 < V3, ** V1 < V4, * V2 < V4, * V2 < V4 | |
Total | 5 ± 0 | 6.73 ± 1.58 | 8.2 ± 2.76 | 11.13 ± 3.29 | 19.34 | ** V1 < V4, * V1 < V3, ** V2 < V4, * V3 < V4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uno, T.; Matsuo, T.; Asano, M.; Loh, P.Y. Effects of Simulated Visual Impairment Conditions on Movement and Anxiety during Gap Crossing. Healthcare 2024, 12, 42. https://doi.org/10.3390/healthcare12010042
Uno T, Matsuo T, Asano M, Loh PY. Effects of Simulated Visual Impairment Conditions on Movement and Anxiety during Gap Crossing. Healthcare. 2024; 12(1):42. https://doi.org/10.3390/healthcare12010042
Chicago/Turabian StyleUno, Tadashi, Taihei Matsuo, Masanari Asano, and Ping Yeap Loh. 2024. "Effects of Simulated Visual Impairment Conditions on Movement and Anxiety during Gap Crossing" Healthcare 12, no. 1: 42. https://doi.org/10.3390/healthcare12010042
APA StyleUno, T., Matsuo, T., Asano, M., & Loh, P. Y. (2024). Effects of Simulated Visual Impairment Conditions on Movement and Anxiety during Gap Crossing. Healthcare, 12(1), 42. https://doi.org/10.3390/healthcare12010042