Development and Validation of an Artificial Intelligence-Based Motion Analysis System for Upper Extremity Rehabilitation Exercises in Patients with Spinal Cord Injury: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Physical Fitness Test Devices
2.4. AI-Based Motion Analysis and Visual Feedback Program
2.5. Motion Repetition Counter
2.6. Calorie Calculation
2.7. Exercise Outcome
2.8. Exercise Interventions for the EG and CG
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hicks, A.L.; Martin, K.A.; Ditor, D.S.; Latimer, A.E.; Craven, C.; Bugaresti, J.; McCartney, N. Long-term exercise training in persons with spinal cord injury: Effects on strength, arm ergometry performance and psychological well-being. Spinal Cord. 2003, 41, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.K.; Park, H.Y. Effect of rehabilitation intervention for lifestyle improvement of spinal cord injury: Systematic review of randomized controlled trials and meta-analysis. Thera Sci. Rehabil. 2020, 9, 107–120. [Google Scholar]
- Gurcay, E.; Bal, A.; Eksioglu, E.; Cakci, A. Quality of life in spinal cord injured persons. Int. J. Rehabil. Res. 2010, 33, 356–358. [Google Scholar] [CrossRef]
- Spooren, A.I.; Janssen-Potten, Y.J.; Kerckhofs, E.; Bongers, H.M.; Seelen, H.A. Evaluation of a task-oriented client-centered upper extremity skilled performance training module in persons with tetraplegia. Spinal Cord. 2011, 49, 1049–1054. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Battistuzzo, C.R.; Zoghi, M.; Galea, M.P. Effects of training on upper limb function after cervical spinal cord injury: A systematic review. Clin. Rehabil. 2015, 29, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Glinsky, J.; Harvey, L.; Korten, M.; Drury, C.; Chee, S.; Gandevia, S.C. Short-term progressive resistance exercise may not be effective at increasing wrist strength in people with tetraplegia: A randomised controlled trial. Aust. J. Physiother. 2008, 54, 103–108. [Google Scholar] [CrossRef]
- Hong, D.S.; Lee, J.H.; Nam, H.J. Effect of elastic band exercise on the biochemical markers of bone metabolism and bone mineral density in spinal cord injured. Korean J. Phys. Ed. 2015, 54, 545–552. [Google Scholar]
- Kim, A.L. An explanatory model for patient adherence of rehabilitation in patients with spinal cord injury. J. Korean Acad. Adult. Nurs. 2010, 22, 90–102. [Google Scholar]
- Kraal, J.J.; Peek, N.; van den Akker-Van Marle, M.E.; Kemps, H.M. Effects and costs of home-based training with telemonitoring guidance in low to moderate risk patients entering cardiac rehabilitation: The FIT@Home study. BMC Cardiovasc. Disord 2013, 13, 82. [Google Scholar] [CrossRef]
- Farzamfar, P.; Heirani, A.; Sedighi, M. The effect of motor training in mirror therapy on gross motor skills of the affected hand in children with hemiplegia. Iranian Rehabil. J. 2017, 15, 243–248. [Google Scholar] [CrossRef]
- Lee, Y.C.; Li, Y.C.; Lin, K.C.; Yao, G.; Chang, Y.J.; Lee, Y.Y.; Liu, C.T.; Hsu, W.L.; Wu, Y.H.; Chu, H.T.; et al. Effects of robotic priming of bilateral arm training, mirror therapy, and impairment-oriented training on sensorimotor and daily functions in patients with chronic stroke: Study protocol of a single-blind, randomized controlled trial. Trials 2022, 23, 566. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Kim, Y.M.; Lee, D.K. The effects of action observation training and mirror therapy on gait and balance in stroke patients. J. Phys. Ther. Sci. 2017, 29, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.J.; McCormick, D.; Shawis, T.; Impson, R.; Griffin, M. Activity-promoting gaming systems in exercise and rehabilitation. J. Rehabil. Res. Dev. 2011, 48, 1171–1186. [Google Scholar] [CrossRef] [PubMed]
- Baptista, R.; Ghorbel, E.; Moissenet, F.; Aouada, D.; Douchet, A.; André, M.; Pager, J.; Bouilland, S. Home self-training: Visual feedback for assisting physical activity for stroke survivors. Comput. Methods Programs Biomed. 2019, 176, 111–120. [Google Scholar] [CrossRef]
- Zhou, H.; Hu, H. Human motion tracking for rehabilitation—A survey. Biomed. Signal. Process Control 2008, 3, 1–18. [Google Scholar] [CrossRef]
- Sayenko, D.G.; Alekhina, M.I.; Masani, K.; Vette, A.H.; Obata, H.; Popovic, M.R.; Nakazawa, K. Positive effect of balance training with visual feedback on standing balance abilities in people with incomplete spinal cord injury. Spinal Cord. 2010, 48, 886–893. [Google Scholar] [CrossRef]
- Banz, R.; Bolliger, M.; Colombo, G.; Dietz, V.; Lünenburger, L. Computerized visual feedback: An adjunct to robotic-assisted gait training. Phys. Ther. 2008, 88, 1135–1145. [Google Scholar] [CrossRef]
- Ma, Y.; Mithraratne, K.; Wilson, N.C.; Wang, X.; Ma, Y.; Zhang, Y. The validity and reliability of a kinect v2-based gait analysis system for children with cerebral palsy. Sensors 2019, 19, 1660. [Google Scholar] [CrossRef]
- Guess, T.M.; Razu, S.; Jahandar, A.; Skubic, M.; Huo, Z. Comparison of 3D joint angles measured with the kinect 2.0 skeletal tracker versus a marker-based motion capture system. J. Appl. Biomech. 2017, 33, 176–181. [Google Scholar] [CrossRef]
- Latreche, A.; Kelaiaia, R.; Chemori, A.; Kerboua, A. Reliability and validity analysis of MediaPipe-based measurement system for some human rehabilitation motions. Measurement 2023, 214, 112826. [Google Scholar] [CrossRef]
- Hii, C.S.T.; Gan, K.B.; Zainal, N.; Mohamed Ibrahim, N.; Azmin, S.; Mat Desa, S.H.; van de Warrenburg, B.; You, H.W. Automated Gait Analysis Based on a Marker-Free Pose Estimation Model. Sensors 2023, 23, 6489. [Google Scholar] [CrossRef] [PubMed]
- Roberts, T.T.; Leonard, G.R.; Cepela, D.J. Classifications In Brief: American Spinal Injury Association (ASIA) Impairment Scale. Clin. Orthop. Relat. Res. 2017, 475, 1499–1504. [Google Scholar] [CrossRef] [PubMed]
- Neil, S.E.; Myring, A.; Peeters, M.J.; Pirie, I.; Jacobs, R.; Hunt, M.A.; Garland, S.J.; Campbell, K.L. Reliability and validity of the Performance Recorder 1 for measuring isometric knee flexor and extensor strength. Physiother. Theory Pract. 2013, 29, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Farrow, M.; Nightingale, T.E.; Maher, J.; McKay, C.D.; Thompson, D.; Bilzon, J.L.J. Effect of exercise on cardiometabolic risk factors in adults with chronic spinal cord injury: A systematic review. Arch. Phys. Med. Rehabil. 2020, 101, 2177–2205. [Google Scholar] [CrossRef] [PubMed]
- Bizzarini, E.; Saaccavini, M.; Lipanje, F.; Magrin, P.; Malisan, C.; Zampa, A. Exercise prescription in subject with spinal cord injuries. Arch. Phys. Med. Rehabil. 2005, 86, 1170–1175. [Google Scholar] [CrossRef] [PubMed]
- Sasso, E.; Backus, D. Home-based circuit resistance training to overcome barriers to exercise for people with spinal cord injury: A case study. J. Neurol. Phys. Ther. 2013, 37, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Rogers, M.E.; Patterson, J.A.; del Pozo-Cruz, B.; Travis, R.; Rogers, N.L.; Takeshima, N. Caloric expenditure of elastic resistance training in upper and lower body exercise. In Proceedings of the Medicine and Science in Sports and Exercise, Orlando, FL, USA, 27–31 May 2014; Volume 46, pp. 244–245. [Google Scholar]
- Uchida, M.C.; Nishida, M.M.; Sampaio, R.A.; Moritani, T.; Arai, H. Thera-band® elastic band tension: Reference values for physical activity. J. Phys. Ther. Sci. 2016, 28, 1266–1271. [Google Scholar] [CrossRef]
- Colado, J.C.; Garcia-Masso, X.; Triplett, N.T.; Calatayud, J.; Flandez, J.; Behm, D.; Rogers, M.E. Construct and concurrent validation of a new resistance intensity scale for exercise with Thera-Band® elastic bands. J. Sport Sci. Med. 2014, 13, 758–766. [Google Scholar]
- Collins, E.G.; Gater, D.; Kiratli, J.; Butler, J.; Hanson, K.; Langbein, W.E. Energy cost of physical activities in persons with spinal cord injury. Med. Sci. Sports Exerc. 2010, 42, 691–700. [Google Scholar] [CrossRef]
- Brooke, J. SUS-A quick and dirty usability scale. Usability Eval. Ind. 1995, 189, 189–194. [Google Scholar]
Chest Press | Shoulder Press | Arm Curl | |
---|---|---|---|
Counting | x, z, and w of Left_elbow: x < 0, z > 0, w > 0.5 | y and w of Left_elbow: y < 0, w > 0 | y of Left_wrist > y of Left_elbow |
Reset | x, z, and w of Left_elbow: x > 0.5, z < 0.5, w < 0 | y and w of Left_elbow y > 0, w < 0 | y of Left_wrist < y of Left_elbow |
Band Color | Yellow | Red | Green | Blue | Black |
---|---|---|---|---|---|
MET | 2.77 | 2.88 | 2.93 | 3.1 | 3.29 |
Code | Age | Sex | Weight (kg) | Height (cm) | Onset Year | ASIA Score | Neurologic Level of Injury | Types of Spinal Cord Injuries | Number of Exercise Sessions Participated |
---|---|---|---|---|---|---|---|---|---|
A1 | 66 | F | 70.1 | 145.1 | 1982 | D | Lumbar | Incomplete | 20 |
A2 | 80 | M | 65.3 | 157.7 | 2014 | D | Cervical | Incomplete | 23 |
A3 | 56 | M | 72.7 | 165.6 | 2020 | D | Cervical | Incomplete | 24 |
A4 | 70 | M | 102.4 | 181.4 | 2007 | C | Thoracic | Incomplete | 22 |
B1 | 64 | M | 70.8 | 170 | 2019 | D | Thoracic | Incomplete | 24 |
B2 | 49 | F | 75.2 | 162 | 2017 | A | Thoracic | Complete | 19 |
B3 | 59 | F | 43.3 | 153 | 2018 | C | Cervical | Incomplete | 22 |
B4 | 57 | F | 58.4 | 159.6 | 2020 | D | Lumbar | Incomplete | 23 |
B5 | 68 | M | 84.6 | 170 | 2019 | D | Thoracic | Incomplete | 24 |
Left Chest Press | Right Chest Press | Shoulder Press | Lat Pull Down | Left Arm Curl | Right Arm Curl | |
---|---|---|---|---|---|---|
A1 | ||||||
Pre-intervention test | 13.72 | 10.67 | 22.08 | 19.86 | 54 | 54 |
Post-intervention test | 24.29 | 19.75 | 23.78 | 38.69 | 90 | 120 |
A2 | ||||||
Pre-intervention test | 28.05 | 25.79 | 26.79 | 28.3 | 100 | 96 |
Post-intervention test | 29.27 | 29.35 | 30.25 | 31.64 | 180 | 152 |
A3 | ||||||
Pre-intervention test | 14.64 | 12.89 | 20.72 | 21.84 | 114 | 99 |
Post-intervention test | 31.17 | 36.54 | 26.94 | 37.77 | 183 | 198 |
A4 | ||||||
Pre-intervention test | 18.95 | 22.35 | 20.87 | 29.21 | 130 | 165 |
Post-intervention test | 22.21 | 27.65 | 55.14 | 34.96 | 198 | 258 |
Left Chest Press | Right Chest Press | Shoulder Press | Lat Pull Down | Left Arm Curl | Right Arm Curl | |
---|---|---|---|---|---|---|
B1 | ||||||
Pre-intervention test | 29.01 | 37.88 | 39.6 | 59.55 | 175 | 185 |
Post-intervention test | 40.17 | 50.32 | 39.52 | 54.02 | 240 | 360 |
B2 | ||||||
Pre-intervention test | 23.8 | 32.58 | 34.9 | 42.03 | 148 | 160 |
Post-intervention test | 28.5 | 37.73 | 31.11 | 34.28 | 260 | 300 |
B3 | ||||||
Pre-intervention test | 17.3 | 18.21 | 20.72 | 6.84 | 69 | 108 |
Post-intervention test | 14.38 | 17.62 | 16.4 | 16.9 | 112 | 120 |
B4 | ||||||
Pre-intervention test | 18.18 | 16.14 | 27.47 | 21.76 | 78 | 76 |
Post-intervention test | 19.49 | 23.86 | 31.17 | 25.87 | 177 | 177 |
B5 | ||||||
Pre-intervention test | 44.64 | 44.04 | 49.67 | 49.67 | 240 | 205 |
Post-intervention test | 46.06 | 49.69 | 41.17 | 53.1 | 372 | 432 |
Experimental Group (n = 4) | Control Group (n = 5) | Inter- Group Differences | p† | ŋ2 | |
---|---|---|---|---|---|
Left chest press (kg) | |||||
Pre-intervention test | 18.84 ± 6.54 | 26.58 ± 11.14 | 4.33 (−12.08; 20.75) | 0.463 | 0.190 |
Post-intervention test | 26.73 ± 4.18 | 29.72 ± 13.39 | |||
Intra-group changes | −7.89 ± 7.01 (−19.06; 3.27) | −3.13 ± 5.23 (−9.63; 3.37) | |||
p‡ | 0.11 | 0.252 | |||
Right chest press (kg) | |||||
Pre-intervention test | 17.92 ± 7.28 | 29.77 ± 12.21 | 4.21 (−17.05; 25.48) | 0.573 | 0.117 |
Post-intervention test | 28.32 ± 6.89 | 35.84 ± 14.83 | |||
Intra-group changes | −10.39 ± 9.13 (−24.92; 4.13) | −6.07 ± 4.7 (−11.92; −0.22) | |||
p‡ | 0.107 | 0.045 * | |||
Shoulder press (kg) | |||||
Pre-intervention test | 22.61 ± 2.84 | 34.47 ± 11.13 | 12.53 (−7.44; 32.51) | 0.140 | 0.571 |
Post-intervention test | 34.02 ± 14.32 | 31.87 ± 9.81 | |||
Intra-group changes | −11.41 ± 15.35 (−35.84; 13.01) | 2.59 ± 4.61 (−3.13; 8.32) | |||
p‡ | 0.234 | 0.277 | |||
Lat pull down (kg) | |||||
Pre-intervention test | 24.8 ± 4.64 | 35.97 ± 21.39 | 10.74 (−4.96; 26.44) | 0.118 | 0.612 |
Post-intervention test | 35.76 ± 3.17 | 36.83 ± 16.46 | |||
Intra-group changes | −10.96 ± 7.56 (−23.00; 1.08) | −0.86 ± 7.36 (−10.00; 8.27) | |||
p‡ | 0.063 | 0.806 | |||
Left arm curl (score) | |||||
Pre-intervention test | 99.5 ± 32.71 | 142.0 ± 70.98 | −16.50 (−61.62; 28.62) | 0.329 | 0.311 |
Post-intervention test | 162.75 ± 49.13 | 232.2 ± 97.3 | |||
Intra-group changes | −63.25 ± 18.96 (−93.42; −33.07) | −90.2 ± 35.92 (−134.80; −45.59) | |||
p‡ | 0.007 ** | 0.005 ** | |||
Right arm curl (score) | |||||
Pre-intervention test | 103.5 ± 45.85 | 146.8 ± 53.7 | −27.00 (−168.11; 114.11) | 0.586 | 0.110 |
Post-intervention test | 182.0 ± 59.93 | 276.6 ± 129.73 | |||
Intra-group changes | −78.5 ± 20.76 (−111.53; −45.46) | −129.8 ± 81.67 (−231.21; −28.38) | |||
p‡ | 0.005 ** | 0.024 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.J.; Jin, S.M.; Kim, S.J.; Kim, J.H.; Kim, H.; Bae, E.; Yoo, S.K.; Kim, J.H. Development and Validation of an Artificial Intelligence-Based Motion Analysis System for Upper Extremity Rehabilitation Exercises in Patients with Spinal Cord Injury: A Randomized Controlled Trial. Healthcare 2024, 12, 7. https://doi.org/10.3390/healthcare12010007
Lee HJ, Jin SM, Kim SJ, Kim JH, Kim H, Bae E, Yoo SK, Kim JH. Development and Validation of an Artificial Intelligence-Based Motion Analysis System for Upper Extremity Rehabilitation Exercises in Patients with Spinal Cord Injury: A Randomized Controlled Trial. Healthcare. 2024; 12(1):7. https://doi.org/10.3390/healthcare12010007
Chicago/Turabian StyleLee, Hyun Jong, Seung Mo Jin, Seck Jin Kim, Jea Hak Kim, Hogene Kim, EunKyung Bae, Sun Kook Yoo, and Jung Hwan Kim. 2024. "Development and Validation of an Artificial Intelligence-Based Motion Analysis System for Upper Extremity Rehabilitation Exercises in Patients with Spinal Cord Injury: A Randomized Controlled Trial" Healthcare 12, no. 1: 7. https://doi.org/10.3390/healthcare12010007
APA StyleLee, H. J., Jin, S. M., Kim, S. J., Kim, J. H., Kim, H., Bae, E., Yoo, S. K., & Kim, J. H. (2024). Development and Validation of an Artificial Intelligence-Based Motion Analysis System for Upper Extremity Rehabilitation Exercises in Patients with Spinal Cord Injury: A Randomized Controlled Trial. Healthcare, 12(1), 7. https://doi.org/10.3390/healthcare12010007