Comparing the Impact of Upper Body Control and Core Muscle Stabilization Training on Landing Biomechanics in Individuals with Functional Ankle Instability: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethical Considerations
2.3. Participants
2.4. Intervention
2.4.1. Upper Body Control Training Group (UBCTG)
2.4.2. Core Muscle Stabilization Training (CMST)
2.5. Outcome Measure
2.5.1. Biomechanical Assessments
2.5.2. Functional Assessments
2.6. Statistical Analysis:
3. Results
3.1. Demographic Information
3.2. Biomechanical Outcomes
3.2.1. Muscle Activation
3.2.2. Motion Analysis
3.2.3. Ground Reaction Force
3.3. Functional Outcomes
4. Discussion
4.1. Biomechanical Properties
4.1.1. Muscle Activation
4.1.2. Joint Movements
4.1.3. Ground Reaction Force
4.2. Functional Properties
4.3. Limitations
4.4. Clinical Implications
4.5. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gribble, P.A.; Bleakley, C.M.; Caulfield, B.M.; Docherty, C.L.; Fourchet, F.; Fong, D.T.; Hertel, J.; Hiller, C.E.; Kaminski, T.W.; McKeon, P.O.; et al. 2016 consensus statement of the International Ankle Consortium: Prevalence, impact and long-term consequences of lateral ankle sprains. Br. J. Sports Med. 2016, 50, 1493–1495. [Google Scholar] [CrossRef] [PubMed]
- Hertel, J. Functional anatomy, pathomechanics, and pathophysiology of lateral ankle instability. J. Athl. Train. 2002, 37, 364. [Google Scholar] [PubMed]
- Hiller, C.E.; Nightingale, E.J.; Lin, C.W.; Coughlan, G.F.; Caulfield, B.; Delahunt, E. Characteristics of people with recurrent ankle sprains: A systematic review with meta-analysis. Br. J. Sports Med. 2011, 45, 660–672. [Google Scholar] [CrossRef] [PubMed]
- Docherty, C.L.; Gansneder, B.M.; Arnold, B.L.; Hurwitz, S.R. Development and reliability of the ankle instability instrument. J. Athl. Train. 2006, 41, 154. [Google Scholar]
- Hertel, J.; Denegar, C.R.; Monroe, M.M.; Stokes, W.L. Talocrural and subtalar joint instability after lateral ankle sprain. Med. Sci. Sports Exerc. 1999, 31, 1501–1508. [Google Scholar] [CrossRef] [PubMed]
- Docherty, C.L.; Moore, J.H.; Arnold, B.L. Effects of strength training on strength development and joint position sense in functionally unstable ankles. J. Athl. Train. 1998, 33, 310. [Google Scholar]
- Gribble, P.A.; Delahunt, E.; Bleakley, C.; Caulfield, B.; Docherty, C.; Fourchet, F.; Fong, D.; Hertel, J.; Hiller, C.; Kaminski, T.; et al. Selection criteria for patients with chronic ankle instability in controlled research: A position statement of the International Ankle Consortium. J. Orthop. Sports Phys. Ther. 2013, 43, 585–591. [Google Scholar] [CrossRef]
- Akuthota, V.; Ferreiro, A.; Moore, T.; Fredericson, M. Core stability exercise principles. Curr. Sports Med. Rep. 2008, 7, 39–44. [Google Scholar] [CrossRef]
- Kibler, W.B.; Press, J.; Sciascia, A. The role of core stability in athletic function. Sports Med. 2006, 36, 189–198. [Google Scholar] [CrossRef]
- Hodges, P.W.; Richardson, C.A. Contraction of the abdominal muscles associated with movement of the lower limb. Phys Ther. 1997, 77, 132–142. [Google Scholar] [CrossRef]
- Araujo, S.; Cohen, D.; Hayes, L. Six weeks of core stability training improves landing kinetics among female capoeira athletes: A pilot study. J. Hum. Kinet. 2015, 45, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Fatahi, F.; Ghasemi, G.; Karimi, M.T. The effect of 8 weeks of core stability muscles training on kinetics of single-leg landing. Phys. Treat. -Specif. Phys. Ther. J. 2016, 6, 85–92. [Google Scholar] [CrossRef]
- Myer, G.D.; Ford, K.R.; McLean, S.G.; Hewett, T.E. The effects of plyo-metric versus dynamic stabilization and balance training on lower extremity biomechanics. Am. J. Sports Med. 2006, 34, 445–455. [Google Scholar] [CrossRef] [PubMed]
- O’Driscoll, J.; Kerin, F.; Delahunt, E. Effect of a 6-week dynamic neuromuscular training programme on ankle joint function: A case report. BMC Sports Sci. Med. Rehabil. 2011, 3, 13. [Google Scholar] [CrossRef] [PubMed]
- Gage, M.J. The Effects of Abdominal Training on Postural Control, Lower Extremity Kinematics, Kinetics, and Muscle Activation. Ph.D. Thesis, Brigham Young University, Provo, UT, USA, 2009. [Google Scholar]
- Pirmohammadi, N.; Shirzad, E.; Minounejad, H. Effect of a Four-week Core Stability Training Program on the Kinetic Parameters in Athletes with Functional Ankle Instability During Single-leg Drop Landing. Sport. Sci. Health 2019, 11, 33–42. [Google Scholar] [CrossRef]
- Boström, K.J.; Dirksen, T.; Zentgraf, K.; Wagner, H. The contribution of upper body movements to dynamic balance regulation during challenged locomotion. Front. Hum. Neurosci. 2018, 12, 8. [Google Scholar] [CrossRef]
- Yalfani, A.; Gandomi, F. The comparison of lower and upper extremity muscles activation during sudden ankle supination in patients with and without chronic ankle instability. Med. Dello Sport 2016, 69, 254–266. [Google Scholar]
- Saghaei, M. Random allocation software for parallel group randomized trials. BMC Med. Res. Methodol. 2004, 4, 26. [Google Scholar] [CrossRef]
- Schulz, K.F.; Altman, D.G.; Moher, D.; CONSORT Group (2010). CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomised trials. BMC Med. 2010, 8, 100–107. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Hiller, C.E.; Refshauge, K.M.; Bundy, A.C.; Herbert, R.D.; Kilbreath, S.L. The Cumberland ankle instability tool: A report of validity and reliability testing. Arch. Phys. Med. Rehabil. 2006, 87, 1235–1241. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.; Rosen, A.B.; Brown, C.N. Cross-cultural adaptation and validation of the Korean version of the Cumberland Ankle Instability Tool. Int. J. Sports Phys. Ther. 2015, 10, 1007. [Google Scholar] [PubMed]
- Van Dijk, C.N.; Lim, L.S.; Bossuyt, P.M.; Marti, R.K. Physical examination is sufficient for the diagnosis of sprained ankles. J. Bone Jt. Surg. Br. 1996, 78, 958–962. [Google Scholar] [CrossRef]
- Mullane, M.; Turner, A.N.; Bishop, C. The Pallof Press. Strength. Cond. J. 2021, 43, 121–128. [Google Scholar] [CrossRef]
- Raeder, C.; Fernandez-Fernandez, J.; Ferrauti, A. Effects of six weeks of medicine ball training on throwing velocity, throwing pre-cision, and isokinetic strength of shoulder rotators in female handball players. J. Strength Cond. Res. 2015, 29, 1904–1914. [Google Scholar] [CrossRef] [PubMed]
- Balaji, E.; Murugavel, K. Motor fitnes parameters response to core strength training on Handbal Players. Int. J. Life Sci. Res. 2013, 1, 76–80. [Google Scholar]
- Lee, S.Y.; Lee, S.M.; Jung, J.M. Peroneus Longus activity according to various angles of a ramp during cross-ramp walking and one-legged standing. J. Back. Musculoskelet. Rehabil. 2017, 30, 1215–1219. [Google Scholar] [CrossRef]
- Kobayashi, T.; Gamada, K. Lateral ankle sprain and chronic ankle instability: A critical review. Foot Ankle Spec. 2014, 7, 298–326. [Google Scholar] [CrossRef]
- Mendez-Rebolledo, G.; Guzmán-Venegas, R.; Cruz-Montecinos, C.; Watanabe, K.; Calatayud, J.; Martinez-Valdes, E. Individuals with chronic ankle instability show altered regional activation of the peroneus longus muscle during ankle eversion. Scand. J. Med. Sci. Sports 2023. [Google Scholar] [CrossRef]
- Maniar, N.; Schache, A.G.; Pizzolato, C.; Opar, D.A. Muscle function during single leg landing. Sci. Rep. 2022, 12, 11486. [Google Scholar] [CrossRef]
- Delahunt, E.; Monaghan, K.; Caulfield, B. Ankle function during hopping in subjects with functional instability of the ankle joint. Scand. J. Med. Sci. Sports 2007, 17, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Suda, E.Y.; Sacco, I.C. Altered leg muscle activity in volleyball players with functional ankle instability during a sideward lateral cutting movement. Phys. Ther. Sport 2011, 12, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, S.W.; Teyhen, D.S.; Lorenson, C.L.; Warren, R.L.; Koreerat, C.M.; Straseske, C.A.; Childs, J.D. Y-balance test: A reliability study involving multiple raters. Mil. Med. 2013, 178, 1264–1270. [Google Scholar] [CrossRef] [PubMed]
- Laskin, G.; Talpey, S.; Gregory, R. The effects of an upper body conditioning stimulus on lower body post-activation performance enhancement (PAPE): A pilot study. Int. J. Strength Cond. 2021, 1, 1–9. [Google Scholar] [CrossRef]
- Morasso, P. Integrating ankle and hip strategies for the stabilization of upright standing: An intermittent control model. Front. Comput. Neurosci. 2022, 16, 956932. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, S.; Tsuda, E.; Yamamoto, Y.; Maeda, S.; Kimura, Y.; Fujita, Y.; Ishibashi, Y. Core-muscle training and neuromuscular control of the lower limb and trunk. J. Athl. Train. 2019, 54, 959–969. [Google Scholar] [CrossRef]
- Han, S.; Lee, H.; Son, S.J.; Hopkins, J.T. Effect of varied dorsiflexion range of motion on landing biomechanics in chronic ankle instability. Scand. J. Med. Sci. Sports 2023, 33, 1125–1134. [Google Scholar] [CrossRef]
- Hoch, M.C.; Farwell, K.E.; Gaven, S.L.; Weinhandl, J.T. Weight-bearing dorsiflexion range of motion and landing biomechanics in individuals with chronic ankle instability. J. Athl. Train. 2015, 50, 833–839. [Google Scholar] [CrossRef]
- Han, J.; Anson, J.; Waddington, G.; Adams, R.; Liu, Y. The role of ankle proprioception for balance control in relation to sports performance and injury. Biomed. Res. Int. 2015, 2015, 842804. [Google Scholar] [CrossRef]
- Sheikhi, B.; Letafatkar, A.; Thomas, A.C.; Ford, K.R. Altered trunk and lower extremity movement coordination after neuromuscular training with and without external focus instruction: A randomized controlled trial. BMC Sports Sci. Med. Rehabil. 2021, 13, 92. [Google Scholar] [CrossRef]
- Fong, C.M.; Blackburn, J.T.; Norcross, M.F.; McGrath, M.; Padua, D.A. Ankle-dorsiflexion range of motion and landing biomechanics. J. Athl. Train. 2011, 46, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Fatahi, F.; Ghasemi, G.; Karimi, M.; Beyranvand, R. The effect of eight weeks of core stability training on the lower extremity joints moment during single-leg drop landing. Balt. J. Health Phys. Act. 2019, 11, 34–44. [Google Scholar] [CrossRef]
- Karandikar, N.; Vargas, O.O. Kinetic chains: A review of the concept and its clinical applications. PM&R 2011, 3, 739–745. [Google Scholar]
- Caulfield, B.; Garrett, M. Changes in ground reaction force during jump landing in subjects with functional instability of the ankle joint. Clin. Biomech. 2004, 19, 617–621. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, E.J. The Effect of Diagonal Exercise Training for Neurorehabilitation on Functional Activity in Stroke Patients: A Pilot Study. Brain Sci. 2023, 13, 799. [Google Scholar] [CrossRef]
- Yang, J.; Park, S.; Kim, S. Effects of Diagonal Pattern Self-Exercise on Trunk Control, Balance, and Gait Ability in Chronic Stroke Patients. J. Int. Acad. Phys. Ther. Res. 2020, 11, 2028–2035. [Google Scholar] [CrossRef]
UBCT Group | CMST Group |
---|---|
Resistance Band Pallof Press | Plank |
Medicine Ball Slams | Side Plank |
Rotational Medicine Ball Throws | Supine Bridge |
Diagonal Lunge with Twist | Abdominal Crunch |
Hollow Body Hold | Russian Twist |
Hollow Body Hold with Dumbbell | Split-leg Scissors |
Variable | UBCT Group (n = 21) | CMST Group (n = 21) | p-Value |
---|---|---|---|
Age (year) | 24.43 ± 1.46 | 24.57 ± 1.88 | 0.786 |
Gender (M/F) | 10/11 | 9/12 | - |
Height (cm) | 169.09 ± 3.72 | 168.14 ± 4.94 | 0.485 |
Weight (kg) | 67.23 ± 3.74 | 67.04 ± 4.76 | 0.886 |
BMI (kg/m2) | 22.54 ± 1.61 | 22.77 ± 2.19 | 0.706 |
Leg side L/R (num) | 5/16 | 7/14 | - |
CAIT-K score | 19.33 ± 2.51 | 20.10 ± 1.99 | 0.284 |
Muscles | Group | Pre-Test | Post-Test | Mean Difference (95% CI) | t (p) |
---|---|---|---|---|---|
GCM | UBCT group | 18.57 ± 1.74 | 20.10 ± 2.80 * | −1.52 (−2.9, −0.0) | −0.299 |
(%MVC) | CMST group | 18.81 ± 1.88 | 20.05 ± 2.63 | −1.23 (−2.6, 0.1) | (0.766) |
TA | UBCT group | 26.76 ± 0.76 | 29.05 ± 2.83 * | −2.28 (−3.5, −0.9) | 2.488 |
(%MVC) | CMST group | 26.14 ± 1.27 | 26.71 ± 1.45 | −0.57 (−1.1, 0.0) | (0.017 *) |
PL | UBCT group | 23.38 ± 2.08 | 24.33 ± 2.43 * | −0.95 (−1.6, −0.2) | 0.862 |
(%MVC) | CMST group | 22.29 ± 1.97 | 22.86 ± 1.90 | −0.57 (−1.2, 0.0) | (0.394) |
Variables | Group | Pre-Test | Post-Test | Mean Difference (95% CI) | t (p) |
---|---|---|---|---|---|
Ankle EV/IV (°) | UBCT group | 1.64 ± 0.77 | 3.16 ± 0.28 ** | −1.51 (−1.8, −1.1) | −1.532 (0.133) |
CMST group | 1.78 ± 0.17 | 2.99 ± 0.50 ** | −1.21 (−1.4, −0.9) | ||
Ankle DF/PF(°) | UBCT group | 12.91 ± 0.09 | 13.11 ± 0.1 1** | −0.20 (−0.2, −0.1) | −0.364 (0.717) |
CMST group | 12.84 ± 0.26 | 13.02 ± 0.19 * | −0.18 (−0.3, −0.0) | ||
Knee flex/ext (°) | UBCT group | 63.52 ± 6.51 | 65.42 ± 6.74 * | −1.90 (−2.9, −0.8) | −2.204 (0.033 *) |
CMST group | 63.61 ± 3.96 | 64.28 ± 4.25 * | −0.66 (−1.2, −0.0) | ||
Hip flex/ext (°) | UBCT group | 32.71 ± 1.38 | 33.28 ± 1.92 | −0.57 (−1.4, 0.2) | 0.819 (0.418) |
CMST group | 33.09 ± 1.84 | 34.52 ± 2.60 | −1.42 (−3.4, 0.5) |
Variables | Group | Pre-Test | Post-Test | Mean Difference (95% CI) | t (p) |
---|---|---|---|---|---|
Peak vGRF(N/kg) | UBCT group | 44.14 ± 2.86 | 40.43 ± 1.74 ** | 3.71 (2.1, 5.2) | 2.074 (0.045 *) |
CMST group | 42.05 ± 2.37 | 40.10 ± 1.67 ** | 1.95 (1.1, 2.7) | ||
Time to peak vGRF (ms) | UBCT group | 43.38 ± 11.94 | 58.80 ± 9.01 ** | −14.42 (−18,−10) | −2.432 (0.020 *) |
CMST group | 53.85 ± 9.64 | 61.52 ± 11.23 * | −7.66 (−11, −4) | ||
CAIT-K score | UBCT group | 19.33 ± 2.51 | 21.80 ± 3.81 * | −2.47 (−4.0, −0.9) | −2.083 (0.044 *) |
CMST group | 20.10 ± 1.99 | 20.95 ± 2.29 * | −0.85 (−1.3, −0.3) |
Variables | Group | Pre-Test | Post-Test | Mean Rank | Z (p) |
---|---|---|---|---|---|
Dynamic balance (cm) | |||||
Anterior | UBCT group | 63.00 ± 1.58 | 64.43 ± 1.63 * | (4.00, 10.60) | −1.754 (0.079) |
CMST group | 63.33 ± 2.05 | 64.00 ± 2.05 * | (8.80, 10.43) | ||
Posterolateral | UBCT group | 81.43 ± 1.32 | 83.43 ± 1.85 * | (4.50, 11.56) | −2.121 (0.034 *) |
CMST group | 81.48 ± 1.28 | 82.43 ± 1.72 * | (8.50, 10.54) | ||
Posteromedial | UBCT group | 81.95 ± 1.32 | 83.52 ± 1.86 * | (15.00, 9.18) | −2.205 (0.027 *) |
CMST group | 81.90 ± 1.13 | 82.62 ± 1.53 * | (11.50, 9.60) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nekar, D.M.; Lee, D.-Y.; Hong, J.-H.; Kim, J.-S.; Kim, S.-G.; Nam, Y.-G.; Yu, J.-H. Comparing the Impact of Upper Body Control and Core Muscle Stabilization Training on Landing Biomechanics in Individuals with Functional Ankle Instability: A Randomized Controlled Trial. Healthcare 2024, 12, 70. https://doi.org/10.3390/healthcare12010070
Nekar DM, Lee D-Y, Hong J-H, Kim J-S, Kim S-G, Nam Y-G, Yu J-H. Comparing the Impact of Upper Body Control and Core Muscle Stabilization Training on Landing Biomechanics in Individuals with Functional Ankle Instability: A Randomized Controlled Trial. Healthcare. 2024; 12(1):70. https://doi.org/10.3390/healthcare12010070
Chicago/Turabian StyleNekar, Daekook M., Dong-Yeop Lee, Ji-Heon Hong, Jin-Seop Kim, Seong-Gil Kim, Yeon-Gyo Nam, and Jae-Ho Yu. 2024. "Comparing the Impact of Upper Body Control and Core Muscle Stabilization Training on Landing Biomechanics in Individuals with Functional Ankle Instability: A Randomized Controlled Trial" Healthcare 12, no. 1: 70. https://doi.org/10.3390/healthcare12010070
APA StyleNekar, D. M., Lee, D.-Y., Hong, J.-H., Kim, J.-S., Kim, S.-G., Nam, Y.-G., & Yu, J.-H. (2024). Comparing the Impact of Upper Body Control and Core Muscle Stabilization Training on Landing Biomechanics in Individuals with Functional Ankle Instability: A Randomized Controlled Trial. Healthcare, 12(1), 70. https://doi.org/10.3390/healthcare12010070