Effectiveness of Virtual Reality on Rehabilitation of Chronic Non-Specific Low Back Pain Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Patient Participation
2.3. Outcome Measurements
2.3.1. Pain Intensity
2.3.2. Active ROM of the Lumbar Spine
2.3.3. Function
2.3.4. Balance
2.3.5. Satisfaction Level
2.3.6. Commitment to Exercise Sessions
2.4. Interventions
2.4.1. Postural Correction with Lumbar Stabilization
2.4.2. Moist Heat
2.4.3. Hamstring and Back Muscle Stretching
2.5. Statistical Design
3. Results
4. Discussion
4.1. Implication for Clinical Practice
4.2. Implication for Future Research
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hartvigsen, J.; Hancock, M.J.; Kongsted, A.; Louw, Q.; Ferreira, M.L.; Genevay, S.; Hoy, D.; Karppinen, J.; Pransky, G.; Sieper, J. What Low Back Pain Is and Why We Need to Pay Attention. Lancet 2018, 391, 2356–2367. [Google Scholar] [CrossRef] [PubMed]
- Maher, C.; Underwood, M.; Buchbinder, R. Non-Specific Low Back Pain. Lancet 2017, 389, 736–747. [Google Scholar] [CrossRef]
- Pangarkar, S.S.; Kang, D.G.; Sandbrink, F.; Bevevino, A.; Tillisch, K.; Konitzer, L.; Sall, J. VA/DoD Clinical Practice Guideline: Diagnosis and Treatment of Low Back Pain. J. Gen. Intern. Med. 2019, 34, 2620–2629. [Google Scholar] [CrossRef] [PubMed]
- Feise, R.J.; Mathieson, S.; Kessler, R.S.; Witenko, C.; Zaina, F.; Brown, B.T. Benefits and Harms of Treatments for Chronic Nonspecific Low Back Pain without Radiculopathy: Systematic Review and Meta-Analysis. Spine J. 2023, 23, 629–641. [Google Scholar] [CrossRef] [PubMed]
- Zadro, J.R.; Shirley, D.; Simic, M.; Mousavi, S.J.; Ceprnja, D.; Maka, K.; Sung, J.; Ferreira, P. Video-Game–Based Exercises for Older People with Chronic Low Back Pain: A Randomized Controlledtable Trial (GAMEBACK). Phys. Ther. 2019, 99, 14–27. [Google Scholar] [CrossRef]
- Booth, M.L.; Owen, N.; Bauman, A.; Clavisi, O.; Leslie, E. Social–Cognitive and Perceived Environment Influences Associated with Physical Activity in Older Australians. Prev. Med. 2000, 31, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Ekkekakis, P.; Hall, E.E.; Petruzzello, S.J. Some like It Vigorous: Measuring Individual Differences in the Preference for and Tolerance of Exercise Intensity. J. Sport Exerc. Psychol. 2005, 27, 350–374. [Google Scholar] [CrossRef]
- Ekkekakis, P.; Parfitt, G.; Petruzzello, S.J. The Pleasure and Displeasure People Feel When They Exercise at Different Intensities: Decennial Update and Progress towards a Tripartite Rationale for Exercise Intensity Prescription. Sports Med. 2011, 41, 641–671. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.M.; Dunsiger, S.; Ciccolo, J.T.; Lewis, B.A.; Albrecht, A.E.; Marcus, B.H. Acute Affective Response to a Moderate-Intensity Exercise Stimulus Predicts Physical Activity Participation 6 and 12 Months Later. Psychol. Sport Exerc. 2008, 9, 231–245. [Google Scholar] [CrossRef]
- Vlaeyen, J.W.S.; Linton, S.J. Fear-Avoidance Model of Chronic Musculoskeletal Pain: 12 Years On. Pain 2012, 153, 1144–1147. [Google Scholar] [CrossRef]
- Kato, P.M. Video Games in Health Care: Closing the Gap. Rev. Gen. Psychol. 2010, 14, 113–121. [Google Scholar] [CrossRef]
- De Miguel-Rubio, A.; Rubio, M.D.; Alba-Rueda, A.; Salazar, A.; Moral-Munoz, J.A.; Lucena-Anton, D. Virtual Reality Systems for Upper Limb Motor Function Recovery in Patients with Spinal Cord Injury: Systematic Review and Meta-Analysis. JMIR Mhealth Uhealth 2020, 8, e22537. [Google Scholar] [CrossRef]
- Pereira, M.F.; Prahm, C.; Kolbenschlag, J.; Oliveira, E.; Rodrigues, N.F. Application of AR and VR in Hand Rehabilitation: A Systematic Review. J. Biomed. Inform. 2020, 111, 103584. [Google Scholar] [CrossRef] [PubMed]
- Matheve, T.; Bogaerts, K.; Timmermans, A. Virtual Reality Distraction Induces Hypoalgesia in Patients with Chronic Low Back Pain: A Randomized Controlled Trial. J. Neuroeng. Rehabil. 2020, 17, 55. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yu, F.; Shi, D.; Shi, J.; Tian, Z.; Yang, J.; Wang, X.; Jiang, Q. Application of Virtual Reality Technology in Clinical Medicine. Am. J. Transl. Res. 2017, 9, 3867. [Google Scholar] [PubMed]
- Brea-Gómez, B.; Torres-Sánchez, I.; Ortiz-Rubio, A.; Calvache-Mateo, A.; Cabrera-Martos, I.; López-López, L.; Valenza, M.C. Virtual Reality in the Treatment of Adults with Chronic Low Back Pain: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Int. J. Environ. Res. Public Health 2021, 18, 11806. [Google Scholar] [CrossRef]
- Li, R.; Li, Y.; Kong, Y.; Li, H.; Hu, D.; Fu, C.; Wei, Q. Virtual Reality–Based Training in Chronic Low Back Pain: Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Med. Internet Res. 2024, 26, e45406. [Google Scholar] [CrossRef] [PubMed]
- Alghadir, A.H.; Anwer, S.; Iqbal, A.; Iqbal, Z.A. Test-Retest Reliability, Validity, and Minimum Detectable Change of Visual Analog, Numerical Rating, and Verbal Rating Scales for Measurement of Osteoarthritic Knee Pain. J. Pain Res. 2018, 11, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Suriyaamarit, D.; Leevattananukool, P.; Chiradejnant, A. Test–Retest and Inter-Rater Reliability of Lumbar Range of Motion Procedure Using Back Range of Motion Instrument. Physiother. Q. 2024, 32, 73–77. [Google Scholar] [CrossRef]
- Nancy, R.; Brandy, W. Joint Range of Motion and Muscle Length Testing, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2024; ISBN 9780323831871. [Google Scholar]
- Hussien, H.M.; Abdel-Raoof, N.A.; Kattabei, O.M.; Ahmed, H.H. Effect of Mulligan Concept Lumbar SNAG on Chronic Nonspecific Low Back Pain. J. Chiropr. Med. 2017, 16, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Sheahan, P.J.; Nelson-Wong, E.J.; Fischer, S.L. A Review of Culturally Adapted Versions of the Oswestry Disability Index: The Adaptation Process, Construct Validity, Test–Retest Reliability and Internal Consistency. Disabil. Rehabil. 2015, 37, 2367–2374. [Google Scholar] [CrossRef]
- Hussein, H.M. Postural Indices and Limits of Stability in Subjects Having Chronic Low Back Pain versus Healthy Control: A Cross-Sectional Comparative Study. Med. Rehabil. 2021, 25, 13–17. [Google Scholar] [CrossRef]
- Arifin, N.; Osman, N.A.A.; Abas, W.A.B.W. Intrarater Test-Retest Reliability of Static and Dynamic Stability Indexes Measurement Using the Biodex Stability System during Unilateral Stance. J. Appl. Biomech. 2014, 30, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Tehrani, A.B.; Feldman, S.R.; Camacho, F.T.; Balkrishnan, R. Patient Satisfaction with Outpatient Medical Care in the United States. Health Outcomes Res. Med. 2011, 2, e197–e202. [Google Scholar] [CrossRef]
- Bhadauria, E.A.; Gurudut, P. Comparative Effectiveness of Lumbar Stabilization, Dynamic Strengthening, and Pilates on Chronic Low Back Pain: Randomized Clinical Trial. J. Exerc. Rehabil. 2017, 13, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Balamurugan, J.; Hariharasudhan, R. A Randomized Double-Blinded Study of Effectiveness of Strain Counter-Strain Technique and Muscle Energy Technique in Reducing Pain and Disability in Subjects with Mechanical Low Back Pain. Saudi J. Sports Med. 2014, 14, 83–88. [Google Scholar] [CrossRef]
- Seif, H.E.; Alenazi, A.; Hassan, S.M.; Kachanathu, S.J.; Hafez, A.R. The Effect of Stretching Hamstring, Gastrocnemius, Iliopsoas and Back Muscles on Pain and Functional Activities in Patients with Chronic Low Back Pain: A Randomized Clinical Trial. Open Rehabil. J. 2015, 03, 139–145. [Google Scholar] [CrossRef]
- Yalfani, A.; Abedi, M.; Raeisi, Z.; Asgarpour, A. The Effects of Virtual Reality Training on Postural Sway and Physical Function Performance on Older Women with Chronic Low Back Pain: A Double-Blind Randomized Clinical Trial. J. Back Musculoskelet. Rehabil. 2024, 37, 761–770. [Google Scholar] [CrossRef]
- Yalfani, A.; Abedi, M.; Raeisi, Z. Effects of an 8-Week Virtual Reality Training Program on Pain, Fall Risk, and Quality of Life in Elderly Women with Chronic Low Back Pain: Double-Blind Randomized Clinical Trial. Games Health J. 2022, 11, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Afzal, M.W.; Ahmad, A.; Mohseni Bandpei, M.A.; Gillani, S.A.; Hanif, A.; Sharif Waqas, M. Effects of Virtual Reality Exercises and Routine Physical Therapy on Pain Intensity and Functional Disability in Patients with Chronic Low Back Pain. J. Pak. Med. Assoc. 2022, 72, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Vugts, M.A.P.; Zedlitz, A.M.E.E.; Joosen, M.C.W.; Vrijhoef, H.J.M. Serious Gaming during Multidisciplinary Rehabilitation for Patients with Chronic Pain or Fatigue Symptoms: Mixed Methods Design of a Realist Process Evaluation. J. Med. Internet Res. 2020, 22, e14766. [Google Scholar] [CrossRef] [PubMed]
- Suleiman-Martos, N.; García-Lara, R.; Albendín-García, L.; Romero-Béjar, J.L.; Cañadas-De La Fuente, G.A.; Monsalve-Reyes, C.; Gomez-Urquiza, J.L. Effects of Active Video Games on Physical Function in Independent Community-dwelling Older Adults: A Systematic Review and Meta-analysis. J. Adv. Nurs. 2022, 78, 1228–1244. [Google Scholar] [CrossRef] [PubMed]
- Tack, C. Virtual Reality and Chronic Low Back Pain. Disabil. Rehabil. Assist. Technol. 2021, 16, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, H.G.; Richards, T.L.; Bills, A.R.; Van Oostrom, T.; Magula, J.; Seibel, E.J.; Sharar, S.R. Using FMRI to Study the Neural Correlates of Virtual Reality Analgesia. CNS Spectr. 2006, 11, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Colloca, L.; Raghuraman, N.; Wang, Y.; Akintola, T.; Brawn-Cinani, B.; Colloca, G.; Kier, C.; Varshney, A.; Murthi, S. Virtual Reality: Physiological and Behavioral Mechanisms to Increase Individual Pain Tolerance Limits. Pain 2020, 161, 2010–2021. [Google Scholar] [CrossRef] [PubMed]
Variable | Pre-Intervention | Post-Intervention | MD | 95% CI | t | p | d | |
---|---|---|---|---|---|---|---|---|
M ± SD | M ± SD | Lower | Higher | |||||
Pain intensity by NPRS | 4.95 ± 0.88 | 2.75 ± 1.11 | 2.20 | 1.70 | 2.69 | 9.31 | <0.001 | 1.05 |
FROM | 41.05 ± 6.62 | 50.40 ± 8.15 | 9.35 | −12.06 | −6.63 | −7.21 | <0.001 | 5.79 |
EROM | 10.35 ± 2.36 | 16.05 ± 1.82 | 5.70 | −6.85 | −4.54 | −10.30 | <0.001 | 2.47 |
Function by (ODI) | 19.55 ± 5.57 | 10.85 ± 3.08 | 8.70 | 5.95 | 11.44 | 6.63 | <0.001 | 5.86 |
OSI | 1.52 ± 0.94 | 0.80 ± 0.65 | 0.72 | 0.40 | 1.04 | 4.75 | <0.001 | 0.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussein, H.; Atteya, M.; Kamel, E. Effectiveness of Virtual Reality on Rehabilitation of Chronic Non-Specific Low Back Pain Patients. Healthcare 2024, 12, 1312. https://doi.org/10.3390/healthcare12131312
Hussein H, Atteya M, Kamel E. Effectiveness of Virtual Reality on Rehabilitation of Chronic Non-Specific Low Back Pain Patients. Healthcare. 2024; 12(13):1312. https://doi.org/10.3390/healthcare12131312
Chicago/Turabian StyleHussein, Hisham, Mohamed Atteya, and Ehab Kamel. 2024. "Effectiveness of Virtual Reality on Rehabilitation of Chronic Non-Specific Low Back Pain Patients" Healthcare 12, no. 13: 1312. https://doi.org/10.3390/healthcare12131312
APA StyleHussein, H., Atteya, M., & Kamel, E. (2024). Effectiveness of Virtual Reality on Rehabilitation of Chronic Non-Specific Low Back Pain Patients. Healthcare, 12(13), 1312. https://doi.org/10.3390/healthcare12131312