Effects of a Mat Pilates Exercise Program Associated with Photobiomodulation Therapy in Patients with Chronic Nonspecific Low Back Pain: A Randomized, Double-Blind, Sham-Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Sample Size Calculation
2.4. Interventions
2.4.1. Mat Pilates Exercise Program
2.4.2. Photobiomodulation and Blinding Procedures
2.5. Outcomes Measures
2.5.1. Low Back Pain
2.5.2. Postural Balance
2.5.3. Oswestry Disability Index and Roland Morris Disability Questionnaire
2.5.4. Tampa Scale of Kinesiophobia
2.5.5. Fear Avoidance Beliefs Questionnaire
2.5.6. Pain Catastrophizing Scale
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics and Flowchart of the Participants
3.2. Postural Balance
3.3. Peak Pain Intensity, Perceived Disability, and Pain-Related Fear
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD-Collaborators. Global, regional, and national burden of low back pain, 1990–2020, its attributable risk factors, and projections to 2050: A systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, e316–e329. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; March, L.; Zheng, X.; Huang, J.; Wang, X.; Zhao, J.; Blyth, F.M.; Smith, E.; Buchbinder, R.; Hoy, D. Global low back pain prevalence and years lived with disability from 1990 to 2017: Estimates from the Global Burden of Disease Study 2017. Ann. Transl. Med. 2020, 8, 299. [Google Scholar] [CrossRef] [PubMed]
- Serranheira, F.; Sousa-Uva, M.; Heranz, F.; Kovacs, F.; Sousa-Uva, A. Low Back Pain (LBP), work and absenteeism. Work 2020, 65, 463–469. [Google Scholar] [CrossRef] [PubMed]
- WHO. Low Back Pain; World Health Association (WHO): Geneva, Switzerland, 2023; Available online: https://www.who.int/news-room/fact-sheets/detail/low-back-pain (accessed on 30 June 2023).
- Airaksinen, O.; Brox, J.I.; Cedraschi, C.; Hildebrandt, J.; Klaber-Moffett, J.; Kovacs, F.; Mannion, A.F.; Reis, S.; Staal, J.B.; Ursin, H.; et al. Chapter 4. European guidelines for the management of chronic nonspecific low back pain. Eur. Spine J. 2006, 15 (Suppl. S2), S192–S300. [Google Scholar] [CrossRef]
- Violante, F.S.; Mattioli, S.; Bonfiglioli, R. Low-back pain. Handb. Clin. Neurol. 2015, 131, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Balagué, F.; Mannion, A.F.; Pellisé, F.; Cedraschi, C. Non-specific low back pain. Lancet 2012, 379, 482–491. [Google Scholar] [CrossRef] [PubMed]
- John, J.N.; Ugwu, E.C.; Okezue, O.C.; Ekechukwu, E.N.D.; Mgbeojedo, U.G.; John, D.O.; Ezeukwu, A.O. Kinesiophobia and associated factors among patients with chronic non-specific low back pain. Disabil. Rehabil. 2022, 45, 2651–2659. [Google Scholar] [CrossRef] [PubMed]
- Koch, C.; Hänsel, F. Non-specific Low Back Pain and Postural Control During Quiet Standing-A Systematic Review. Front. Psychol. 2019, 10, 586. [Google Scholar] [CrossRef] [PubMed]
- da Silva, R.A.; Vieira, E.R.; Fernandes, K.B.P.; Andraus, R.A.; Oliveira, M.R.; Sturion, L.A.; Calderon, M.G. People with chronic low back pain have poorer balance than controls in challenging tasks. Disabil. Rehabil. 2018, 40, 1294–1300. [Google Scholar] [CrossRef]
- Sakulsriprasert, P.; Vachalathiti, R.; Kingcha, P. Association among pain, disability, and functional capacity in patients with chronic non-specific low back pain: A cross-sectional study. J. Back Musculoskelet. Rehabil. 2021, 34, 149–157. [Google Scholar] [CrossRef]
- Rush, A.J.; Polatin, P.; Gatchel, R.J. Depression and chronic low back pain: Establishing priorities in treatment. Spine 2000, 25, 2566–2571. [Google Scholar] [CrossRef] [PubMed]
- Fanian, H.; Ghassemi, G.R.; Jourkar, M.; Mallik, S.; Mousavi, M.R. Psychological profile of Iranian patients with low-back pain. East. Mediterr. Health J. 2007, 13, 335–346. [Google Scholar] [PubMed]
- Robertson, D.; Kumbhare, D.; Nolet, P.; Srbely, J.; Newton, G. Associations between low back pain and depression and somatization in a Canadian emerging adult population. J. Can. Chiropr. Assoc. 2017, 61, 96–105. [Google Scholar] [PubMed]
- Owen, P.J.; Miller, C.T.; Mundell, N.L.; Verswijveren, S.; Tagliaferri, S.D.; Brisby, H.; Bowe, S.J.; Belavy, D.L. Which specific modes of exercise training are most effective for treating low back pain? Network meta-analysis. Br. J. Sports Med. 2020, 54, 1279–1287. [Google Scholar] [CrossRef] [PubMed]
- Hayden, J.A.; Ellis, J.; Ogilvie, R.; Malmivaara, A.; van Tulder, M.W. Exercise therapy for chronic low back pain. Cochrane Database Syst. Rev. 2021, 9, Cd009790. [Google Scholar] [CrossRef] [PubMed]
- Wells, C.; Kolt, G.S.; Bialocerkowski, A. Defining Pilates exercise: A systematic review. Complement. Ther. Med. 2012, 20, 253–262. [Google Scholar] [CrossRef]
- Domingues de Freitas, C.; Costa, D.A.; Junior, N.C.; Civile, V.T. Effects of the pilates method on kinesiophobia associated with chronic non-specific low back pain: Systematic review and meta-analysis. J. Bodyw. Mov. Ther. 2020, 24, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Rodríguez, R.; Álvarez-Bueno, C.; Cavero-Redondo, I.; Torres-Costoso, A.; Pozuelo-Carrascosa, D.P.; Reina-Gutiérrez, S.; Pascual-Morena, C.; Martínez-Vizcaíno, V. Best Exercise Options for Reducing Pain and Disability in Adults With Chronic Low Back Pain: Pilates, Strength, Core-Based, and Mind-Body. A Network Meta-analysis. J. Orthop. Sports Phys. Ther. 2022, 52, 505–521. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, L.F.; Hamblin, M.R. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 348–364. [Google Scholar] [CrossRef]
- Ferraresi, C.; Huang, Y.Y.; Hamblin, M.R. Photobiomodulation in human muscle tissue: An advantage in sports performance? J. Biophotonics 2016, 9, 1273–1299. [Google Scholar] [CrossRef]
- Ferraresi, C.; Hamblin, M.R.; Parizotto, N.A. Low-level laser (light) therapy (LLLT) on muscle tissue: Performance, fatigue and repair benefited by the power of light. Photonics Lasers Med. 2012, 1, 267–286. [Google Scholar] [CrossRef]
- Hamblin, M.R. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 2017, 4, 337–361. [Google Scholar] [CrossRef] [PubMed]
- Tomazoni, S.S.; Costa, L.O.P. Photobiomodulation Therapy is Able to Modulate PGE(2) Levels in Patients with Chronic Non-Specific Low Back Pain: A Randomized Placebo-Controlled Trial. Lasers Surg. Med. 2021, 53, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Tomazoni, S.S.; Almeida, M.O.; Bjordal, J.M.; Stausholm, M.B.; Machado, C.; Leal-Junior, E.C.P.; Costa, L.O.P. Photobiomodulation therapy does not decrease pain and disability in people with non-specific low back pain: A systematic review. J. Physiother. 2020, 66, 155–165. [Google Scholar] [CrossRef]
- Djavid, G.E.; Mehrdad, R.; Ghasemi, M.; Hasan-Zadeh, H.; Sotoodeh-Manesh, A.; Pouryaghoub, G. In chronic low back pain, low level laser therapy combined with exercise is more beneficial than exercise alone in the long term: A randomised trial. Aust. J. Physiother. 2007, 53, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Tantawy, S.A.; Abdelbasset, W.K.; Kamel, D.M.; Alrawaili, S.M.; Alsubaie, S.F. Laser photobiomodulation is more effective than ultrasound therapy in patients with chronic nonspecific low back pain: A comparative study. Lasers Med. Sci. 2019, 34, 793–800. [Google Scholar] [CrossRef] [PubMed]
- ePROVIDE. Oswestry Disability Index. 2023. Available online: https://eprovide.mapi-trust.org/instruments/oswestry-disability-index (accessed on 10 August 2023).
- RMDQ. Roland Morris Disability Questionnaire. 2023. Available online: https://www.rmdq.org/ (accessed on 18 August 2023).
- Miyamoto, G.C.; Costa, L.O.; Galvanin, T.; Cabral, C.M. Efficacy of the addition of modified Pilates exercises to a minimal intervention in patients with chronic low back pain: A randomized controlled trial. Phys. Ther. 2013, 93, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Meyer, K.; Tschopp, A.; Sprott, H.; Mannion, A.F. Association between catastrophizing and self-rated pain and disability in patients with chronic low back pain. J. Rehabil. Med. 2009, 41, 620–625. [Google Scholar] [CrossRef]
- Kovacs, F.M.; Seco, J.; Royuela, A.; Pena, A.; Muriel, A.; Spanish Back Pain Research, N. The correlation between pain, catastrophizing, and disability in subacute and chronic low back pain: A study in the routine clinical practice of the Spanish National Health Service. Spine 2011, 36, 339–345. [Google Scholar] [CrossRef]
- Ogunlana, M.O.; Odole, A.C.; Adejumo, A.; Odunaiya, N. Catastrophising, pain, and disability in patients with nonspecific low back pain. Hong Kong Physiother. J. 2015, 33, 73–79. [Google Scholar] [CrossRef]
- da Luz, M.A., Jr.; Costa, L.O.; Fuhro, F.F.; Manzoni, A.C.; de Oliveira, N.T.; Cabral, C.M. Effectiveness of mat Pilates or equipment-based Pilates in patients with chronic non-specific low back pain: A protocol of a randomised controlled trial. BMC Musculoskelet. Disord. 2013, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.W.; Hyun, J.; Kim, S.G. Influence of pilates mat and apparatus exercises on pain and balance of businesswomen with chronic low back pain. J. Phys. Ther. Sci. 2014, 26, 475–477. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Díaz, D.; Bergamin, M.; Gobbo, S.; Martínez-Amat, A.; Hita-Contreras, F. Comparative effects of 12 weeks of equipment based and mat Pilates in patients with Chronic Low Back Pain on pain, function and transversus abdominis activation. A randomized controlled trial. Complement. Ther. Med. 2017, 33, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Yalfani, A.; Raeisi, Z.; Koumasian, Z. Effects of eight-week water versus mat pilates on female patients with chronic nonspecific low back pain: Double-blind randomized clinical trial. J. Bodyw. Mov. Ther. 2020, 24, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Valenza, M.C.; Rodriguez-Torres, J.; Cabrera-Martos, I.; Diaz-Pelegrina, A.; Aguilar-Ferrandiz, M.E.; Castellote-Caballero, Y. Results of a Pilates exercise program in patients with chronic non-specific low back pain: A randomized controlled trial. Clin. Rehabil. 2017, 31, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.P.; Su, Y.H.; Chin, S.F.; Chou, Y.C.; Chia, W.T. Light-emitting diode photobiomodulation therapy for non-specific low back pain in working nurses: A single-center, double-blind, prospective, randomized controlled trial. Medicine 2020, 99, e21611. [Google Scholar] [CrossRef]
- Shafshak, T.S.; Elnemr, R. The Visual Analogue Scale Versus Numerical Rating Scale in Measuring Pain Severity and Predicting Disability in Low Back Pain. J. Clin. Rheumatol. 2021, 27, 282–285. [Google Scholar] [CrossRef]
- della Volpe, R.; Popa, T.; Ginanneschi, F.; Spidalieri, R.; Mazzocchio, R.; Rossi, A. Changes in coordination of postural control during dynamic stance in chronic low back pain patients. Gait Posture 2006, 24, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Ruhe, A.; Fejer, R.; Walker, B. Center of pressure excursion as a measure of balance performance in patients with non-specific low back pain compared to healthy controls: A systematic review of the literature. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2011, 20, 358–368. [Google Scholar] [CrossRef]
- Caffaro, R.R.; França, F.J.; Burke, T.N.; Magalhães, M.O.; Ramos, L.A.; Marques, A.P. Postural control in individuals with and without non-specific chronic low back pain: A preliminary case-control study. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2014, 23, 807–813. [Google Scholar] [CrossRef]
- Dal Farra, F.; Arippa, F.; Arru, M.; Cocco, M.; Porcu, E.; Tramontano, M.; Monticone, M. Effects of exercise on balance in patients with non-specific low back pain: A systematic review and meta-analysis. Eur. J. Phys. Rehabil. Med. 2021, 58, 423. [Google Scholar] [CrossRef] [PubMed]
- Nowotny, A.H.; Calderon, M.G.; de Souza, P.A.; Aguiar, A.F.; Leonard, G.; Alves, B.M.O.; Amorim, C.F.; da Silva, R.A. Lumbar stabilisation exercises versus back endurance-resistance exercise training in athletes with chronic low back pain: Protocol of a randomised controlled trial. BMJ Open Sport. Exerc. Med. 2018, 4, e000452. [Google Scholar] [CrossRef] [PubMed]
- Roland, M.; Fairbank, J. The Roland-Morris Disability Questionnaire and the Oswestry Disability Questionnaire. Spine 2000, 25, 3115–3124. [Google Scholar] [CrossRef] [PubMed]
- Nusbaum, L.; Natour, J.; Ferraz, M.B.; Goldenberg, J. Translation, adaptation and validation of the Roland-Morris questionnaire--Brazil Roland-Morris. Braz. J. Med. Biol. Res. Rev. Bras. De. Pesqui. Medicas E Biol. 2001, 34, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.O.; Maher, C.G.; Latimer, J.; Ferreira, P.H.; Ferreira, M.L.; Pozzi, G.C.; Freitas, L.M. Clinimetric testing of three self-report outcome measures for low back pain patients in Brazil: Which one is the best? Spine 2008, 33, 2459–2463. [Google Scholar] [CrossRef] [PubMed]
- Burbridge, C.; Randall, J.A.; Abraham, L.; Bush, E.N. Measuring the impact of chronic low back pain on everyday functioning: Content validity of the Roland Morris disability questionnaire. J. Patient-Rep. Outcomes 2020, 4, 70. [Google Scholar] [CrossRef] [PubMed]
- Johansson, E.; Lindberg, P. Subacute and chronic low back pain. Reliability and validity of a Swedish version of the Roland and Morris Disability Questionnaire. Scand. J. Rehabil. Med. 1998, 30, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.P.; Fu, T.S.; Liu, C.Y.; Hung, C.I. Psychometric evaluation of the Oswestry Disability Index in patients with chronic low back pain: Factor and Mokken analyses. Health Qual. Life Outcomes 2017, 15, 192. [Google Scholar] [CrossRef] [PubMed]
- Davidson, M.; Keating, J. Oswestry Disability Questionnaire (ODQ). Aust. J. Physiother. 2005, 51, 270. [Google Scholar] [CrossRef]
- Vianin, M. Psychometric properties and clinical usefulness of the Oswestry Disability Index. J. Chiropr. Med. 2008, 7, 161–163. [Google Scholar] [CrossRef]
- Vigatto, R.; Alexandre, N.M.; Correa Filho, H.R. Development of a Brazilian Portuguese version of the Oswestry Disability Index: Cross-cultural adaptation, reliability, and validity. Spine 2007, 32, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.O.; Maher, C.G.; Latimer, J.; Ferreira, P.H.; Pozzi, G.C.; Ribeiro, R.N. Psychometric characteristics of the Brazilian-Portuguese versions of the Functional Rating Index and the Roland Morris Disability Questionnaire. Spine 2007, 32, 1902–1907. [Google Scholar] [CrossRef] [PubMed]
- Hudes, K. The Tampa Scale of Kinesiophobia and neck pain, disability and range of motion: A narrative review of the literature. J. Can. Chiropr. Assoc. 2011, 55, 222–232. [Google Scholar]
- Lundberg, M.; Styf, J.; Jansson, B. On what patients does the Tampa Scale for Kinesiophobia fit? Physiother. Theory Pract. 2009, 25, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Koho, P.; Aho, S.; Kautiainen, H.; Pohjolainen, T.; Hurri, H. Test-retest reliability and comparability of paper and computer questionnaires for the Finnish version of the Tampa Scale of Kinesiophobia. Physiotherapy 2014, 100, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Vlaeyen, J.W.S.; Kole-Snijders, A.M.J.; Boeren, R.G.B.; van Eek, H. Fear of movement/(re)injury in chronic low back pain and its relation to behavioral performance. Pain 1995, 62, 363–372. [Google Scholar] [CrossRef] [PubMed]
- de Souza, F.S.; Marinho Cda, S.; Siqueira, F.B.; Maher, C.G.; Costa, L.O. Psychometric testing confirms that the Brazilian-Portuguese adaptations, the original versions of the Fear-Avoidance Beliefs Questionnaire, and the Tampa Scale of Kinesiophobia have similar measurement properties. Spine 2008, 33, 1028–1033. [Google Scholar] [CrossRef]
- Waddell, G.; Newton, M.; Henderson, I.; Somerville, D.; Main, C.J. A Fear-Avoidance Beliefs Questionnaire (FABQ) and the role of fear-avoidance beliefs in chronic low back pain and disability. Pain 1993, 52, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Jacob, T.; Baras, M.; Zeev, A.; Epstein, L. Low back pain: Reliability of a set of pain measurement tools. Arch. Phys. Med. Rehabil. 2001, 82, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Swinkels-Meewisse, E.J.; Swinkels, R.A.; Verbeek, A.L.; Vlaeyen, J.W.; Oostendorp, R.A. Psychometric properties of the Tampa Scale for kinesiophobia and the fear-avoidance beliefs questionnaire in acute low back pain. Man. Ther. 2003, 8, 29–36. [Google Scholar] [CrossRef]
- Sullivan, M.J.L.; Bishop, S.; Pivik, J. The pain catastrophizing scale: Development and validation. Psych. Assess. 1995, 7, 432–524. [Google Scholar] [CrossRef]
- Osman, A.; Barrios, F.X.; Kopper, B.A.; Hauptmann, W.; Jones, J.; O’Neill, E. Factor structure, reliability, and validity of the Pain Catastrophizing Scale. J. Behav. Med. 1997, 20, 589–605. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, C.H.B.; Williams, A.C.C.; Morley, S.J. Meta-analysis of the psychometric properties of the Pain Catastrophizing Scale and associations with participant characteristics. Pain 2019, 160, 1946–1953. [Google Scholar] [CrossRef] [PubMed]
- Sehn, F.; Chachamovich, E.; Vidor, L.P.; Dall-Agnol, L.; de Souza, I.C.; Torres, I.L.; Fregni, F.; Caumo, W. Cross-cultural adaptation and validation of the Brazilian Portuguese version of the pain catastrophizing scale. Pain Med. 2012, 13, 1425–1435. [Google Scholar] [CrossRef]
- Elkins, M.R.; Moseley, A.M. Intention-to-treat analysis. J. Physiother. 2015, 61, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Yin, Y.; Wang, J.; Zhang, X.; Cai, H.; Peng, F. Efficacy of Pilates on Pain, Functional Disorders and Quality of Life in Patients with Chronic Low Back Pain: A Systematic Review and Meta-Analysis. Int. J. Env. Res. Public. Health 2023, 20, 2850. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, L.S.; Costa, L.; Araujo, A.C.; Nascimento, D.P.; Medeiros, F.C.; Avanzi, M.A.; Leal-Junior, E.C.P.; Costa, L.O.P.; Tomazoni, S.S. Photobiomodulation therapy is not better than placebo in patients with chronic nonspecific low back pain: A randomised placebo-controlled trial. Pain 2021, 162, 1612–1620. [Google Scholar] [CrossRef]
- Nardin, D.M.K.; Stocco, M.R.; Aguiar, A.F.; Machado, F.A.; de Oliveira, R.G.; Andraus, R.A.C. Effects of photobiomodulation and deep water running in patients with chronic non-specific low back pain: A randomized controlled trial. Lasers Med. Sci. 2022, 37, 2135–2144. [Google Scholar] [CrossRef]
- Nambi, G.; Kamal, W.; Es, S.; Joshi, S.; Trivedi, P. Spinal manipulation plus laser therapy versus laser therapy alone in the treatment of chronic non-specific low back pain: A randomized controlled study. Eur. J. Phys. Rehabil. Med. 2018, 54, 880–889. [Google Scholar] [CrossRef]
- Gur, A.; Karakoc, M.; Cevik, R.; Nas, K.; Sarac, A.J.; Karakoc, M. Efficacy of low power laser therapy and exercise on pain and functions in chronic low back pain. Lasers Surg. Med. 2003, 32, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Lopes, S.; Correia, C.; Félix, G.; Lopes, M.; Cruz, A.; Ribeiro, F. Immediate effects of Pilates based therapeutic exercise on postural control of young individuals with non-specific low back pain: A randomized controlled trial. Complement. Ther. Med. 2017, 34, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Taradaj, J.; Rajfur, K.; Rajfur, J.; Ptaszkowski, K.; Ptaszkowska, L.; Sopel, M.; Rosinczuk, J.; Dymarek, R. Effect of laser treatment on postural control parameters in patients with chronic nonspecific low back pain: A randomized placebo-controlled trial. Braz. J. Med. Biol. Res. Rev. Bras. De. Pesqui. Medicas E Biol. 2019, 52, e8474. [Google Scholar] [CrossRef] [PubMed]
- Sirbu, E.; Onofrei, R.R.; Szasz, S.; Susan, M. Predictors of disability in patients with chronic low back pain. Arch. Med. Sci. 2023, 19, 94–100. [Google Scholar] [CrossRef]
PIL + PBMT | PIL + SHAM | Group p-Value | |||||
---|---|---|---|---|---|---|---|
Women (n = 12) | Men (n = 7) | Group (n = 19) | Women (n = 12) | Men (n = 7) | Group (n = 19) | ||
Age (year) | 47.9 (12.4) | 46.7 (10.2) | 47.5 (11.4) | 47.9 (12.0) | 44.6 (9.6) | 46.7 (11.0) | 0.83 |
Height (cm) | 160.4 (7.3) | 174.1 (7.1) | 165.5 (9.8) | 158.3 (7.9) | 172.7 (4.5) | 163.6 (9.8) | 0.55 |
Weight (kg) | 74.0 (12.2) | 95.0 (13.0) | 81.7 (16.0) | 73.6 (14.6) | 84.2 (12.8) | 79.2 (14.1) | 0.62 |
BMI (kg/m2) | 28.8 (4.7) | 31.3 (4.1) | 29.7 (4.5) | 30.6 (5.8) | 28.2 (4.0) | 29.7 (5.2) | 0.98 |
Duration of LBP (year) | 3.0 (0.9) | 2.0 (1.0) | 2.6 (1.0) | 2.5 (0.8) | 2.3 (1.0) | 2.4 (0.8) | 0.49 |
Parameters | Red (RED) | Infrared (IR) |
---|---|---|
Number of LEDs | 132 | 132 |
Wavelength | 660 nm | 850 nm |
Frequency (Hz) | Continuous | Continuous |
Effective irradiation area (each LED) | 0.5 cm2 | 0.5 cm2 |
Mean power (each LED) | 8 mW | 8 mW |
Total power (device) | 2.11 W (2112 mW) | |
Effective area irradiation (device) | 132 cm2 (0.5 cm2 × 264 LED) | |
Power density/irradiance (device) | 16 mW/cm2 (2112 mW/132 cm2) | |
Treatment time | 20 min (1200 s) | |
Total energy/dose | 2532 J (2.11 W × 1200 s) | |
Energy density/fluency | 19.2 J/cm2 (2532 J/132 cm2) | |
Mode of application | Contact |
Wilcoxon Signed Rank Test (Within-Group Change) | Mann–Whitney U Test (Between-Group Change) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | Pre Md | Post Md | Z | p-Value | Effect Size r | ∆ Md | U | W | Z | p-Value | Effect Size r | |||
Peak pain intensity | ||||||||||||||
PIL + PBMT | 19 | 5.00 | 3.00 * | −2.59 | 0.01 | 0.42 | Mod. | −1.00 | 135.00 | 325.00 | −1.35 | 0.18 | 0.22 | Small |
PIL + SHAM | 19 | 5.00 | 3.00 * | −2.38 | 0.02 | 0.39 | Mod. | 0.00 | ||||||
Perceived disability | ||||||||||||||
ODI | ||||||||||||||
PIL + PBMT | 19 | 11.00 | 9.00 * | −2.61 | 0.01 | 0.42 | Mod. | −4.00 | 151.50 | 341.50 | −0.85 | 0.40 | 0.14 | Small |
PIL + SHAM | 19 | 12.00 | 8.00 * | −2.28 | 0.02 | 0.37 | Mod. | −3.00 | ||||||
RMDQ | ||||||||||||||
PIL + PBMT | 19 | 12.00 | 9.00 * | −2.51 | 0.01 | 0.41 | Mod. | −2.00 | 166.50 | 356.50 | −0.41 | 0.69 | 0.07 | Trivial |
PIL + SHAM | 19 | 11.00 | 7.00 * | −3.12 | 0.00 | 0.50 | Mod. | −3.00 | ||||||
Pain-related fear | ||||||||||||||
PCS | ||||||||||||||
PIL + PBMT | 19 | 29.00 | 19.00 * | −3.36 | 0.001 | 0.54 | Large | −10.00 | 175.00 | 365.00 | −0.16 | 0.88 | 0.03 | Trivial |
PIL + SHAM | 19 | 32.00 | 14.00 * | −3.46 | 0.001 | 0.56 | Large | −8.00 | ||||||
TSK | ||||||||||||||
PIL + PBMT | 19 | 37.00 | 36.00 | −1.49 | 0.13 | 0.24 | Small | −5.00 | 144.00 | 334.00 | −1.07 | 0.29 | 0.17 | Small |
PIL + SHAM | 19 | 39.00 | 36.00 | −1.32 | 0.19 | 0.21 | Small | −3.00 | ||||||
FABQ | ||||||||||||||
PIL + PBMT | 19 | 11.00 | 10.00 | −1.25 | 0.21 | 0.20 | Small | −4.00 | 169.50 | 359.5 | −0.32 | 0.76 | 0.05 | Trivial |
PIL + SHAM | 19 | 12.00 | 10.00 | −1.52 | 0.13 | 0.25 | Small | −2.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merlo, J.K.; da Silva, A.V.; Casonatto, J.; Ribeiro, A.S.; de Oliveira Junior, E.; do Nascimento, A.P.; de Oliveira, R.G.; Buzzachera, C.F.; da Silva, R.A.; Aguiar, A.F. Effects of a Mat Pilates Exercise Program Associated with Photobiomodulation Therapy in Patients with Chronic Nonspecific Low Back Pain: A Randomized, Double-Blind, Sham-Controlled Trial. Healthcare 2024, 12, 1416. https://doi.org/10.3390/healthcare12141416
Merlo JK, da Silva AV, Casonatto J, Ribeiro AS, de Oliveira Junior E, do Nascimento AP, de Oliveira RG, Buzzachera CF, da Silva RA, Aguiar AF. Effects of a Mat Pilates Exercise Program Associated with Photobiomodulation Therapy in Patients with Chronic Nonspecific Low Back Pain: A Randomized, Double-Blind, Sham-Controlled Trial. Healthcare. 2024; 12(14):1416. https://doi.org/10.3390/healthcare12141416
Chicago/Turabian StyleMerlo, Jeanne Karlette, Adriano Valmozino da Silva, Juliano Casonatto, Alex Silva Ribeiro, Eros de Oliveira Junior, Ana Paula do Nascimento, Raphael Gonçalves de Oliveira, Cosme Franklim Buzzachera, Rubens Alexandre da Silva, and Andreo Fernando Aguiar. 2024. "Effects of a Mat Pilates Exercise Program Associated with Photobiomodulation Therapy in Patients with Chronic Nonspecific Low Back Pain: A Randomized, Double-Blind, Sham-Controlled Trial" Healthcare 12, no. 14: 1416. https://doi.org/10.3390/healthcare12141416
APA StyleMerlo, J. K., da Silva, A. V., Casonatto, J., Ribeiro, A. S., de Oliveira Junior, E., do Nascimento, A. P., de Oliveira, R. G., Buzzachera, C. F., da Silva, R. A., & Aguiar, A. F. (2024). Effects of a Mat Pilates Exercise Program Associated with Photobiomodulation Therapy in Patients with Chronic Nonspecific Low Back Pain: A Randomized, Double-Blind, Sham-Controlled Trial. Healthcare, 12(14), 1416. https://doi.org/10.3390/healthcare12141416