Exploration of the Determinants of Subjective Health and Depression Using Korean Longitudinal Study of Aging Data
Abstract
:1. Introduction
2. Review of the Literature and Hypothesis Development
2.1. Subjective Health
2.2. Depression
2.3. Medical Expenses
2.4. Eating-Out Expenses
2.5. Regular Exercise
3. Methods
3.1. Research Model and Design
3.2. Data Collection
3.3. Description of Variables
3.4. Data Analysis
4. Results
4.1. Descriptive Statistics and Correlation Matrix
4.2. Results of Hypothesis Testing
5. Discussion
6. Conclusions
6.1. Theoretical Implications
6.2. Policy Implication
6.3. Future Lines of Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Korean Statistical Information Service. Population Projection. 2023. Available online: https://kosis.kr/eng/ (accessed on 2 July 2023).
- Cervi, L.; Calvo, S.; Robledo-Dioses, K. Comunicación digital y ciudad: Análisis de las páginas web de las ciudades más visitadas en el mundo en la era de la COVID-19. Rev. Lat. Com. Soc. 2023, 81, 5. [Google Scholar] [CrossRef]
- Heo, C.U.; Choi, Y. Effects of physical activity on subjective health perception of metabolic syndrome Korean elderly. J. ReA Ther. Devl. Div. 2022, 5, 631–641. [Google Scholar]
- Li, X.; Ge, T.; Dong, Q.; Jiang, Q. Social participation, psychological resilience and depression among widowed older adults in China. BMC Geriatr. 2023, 23, 454. [Google Scholar] [CrossRef]
- An, R.; Albattat, A. A study on the economic evaluation of diabetes treatment in China. Gazz. Medica Ital. Arch. Sci. Mediche 2023, 182, 730–733. [Google Scholar] [CrossRef]
- Gustainienė, L.; Endriulaitienė, A. Job satisfaction and subjective health among sales managers. Balt. J. Manag. 2009, 4, 51–65. [Google Scholar] [CrossRef]
- Low, G.; Molzahn, A.E.; Schopflocher, D. Attitudes to aging mediate the relationship between older peoples’ subjective health and quality of life in 20 countries. Health Qual Life Outcomes 2013, 11, 146. [Google Scholar] [CrossRef]
- Sun, S.; Chen, J.; Johannesson, M.; Kind, P.; Burström, K. Subjective well-being and its association with subjective health status, age, sex, region, and socio-economic characteristics in a Chinese population study. J. Happiness Stud. 2016, 17, 833–873. [Google Scholar] [CrossRef]
- Poortinga, W.; Bird, N.; Hallingberg, B.; Phillips, R.; Williams, D. The role of perceived public and private green space in subjective health and wellbeing during and after the first peak of the COVID-19 outbreak. Landsc. Urban Plan. 2021, 211, 104092. [Google Scholar] [CrossRef]
- Haibo, X.; Albattat, A.; Phuoc, J.C.; Baogui, W. Explore the role of irisin in mitohormesis by PGC-1α. Gazz. Medica Ital. Arch. Sci. Mediche 2022, 181, 564–571. [Google Scholar] [CrossRef]
- Wan, X.; Lighthall, N.R.; Paulson, D. Subjective markers of successful aging and change in Internet use among older adults: The distinctive role of subjective health. Comput. Hum. Behav. 2022, 127, 107064. [Google Scholar] [CrossRef]
- Låftman, S.B.; Modin, B. School-performance indicators and subjective health complaints: Are there gender differences? Sociol. Health Illn. 2012, 34, 608–625. [Google Scholar] [CrossRef]
- Gaitán-Rossi, P.; Vilar-Compte, M.; Ferré-Eguiluz, I.; Ortiz, L.; Garcia, E. Association between feelings of trust and security with subjective health among Mexican migrants in the New York city area. Int. J. Environ. Res. Public Health 2023, 20, 2981. [Google Scholar] [CrossRef]
- Moon, J.; Hwang, J.; Lee, W.S. Relationship between the Engel coefficient, life satisfaction, and subjective health for senior citizens in Korea: Moderating effect of COVID-19. Behav. Sci. 2022, 13, 22. [Google Scholar] [CrossRef]
- Geng, H.M.; Chuang, D.M.; Yang, F.; Yang, Y.; Liu, W.M.; Liu, L.H.; Tian, H.M. Prevalence and determinants of depression in caregivers of cancer patients: A systematic review and meta-analysis. Medicine 2018, 97, e11836. [Google Scholar] [CrossRef]
- Fried, E.I.; Flake, J.K.; Robinaugh, D.J. Revisiting the theoretical and methodological foundations of depression measurement. Nat. Rev. Psychol. 2022, 1, 358–368. [Google Scholar] [CrossRef]
- Yoon, S.; Kleinman, M.; Mertz, J.; Brannick, M. Is social network site usage related to depression? A meta-analysis of Facebook–depression relations. J. Affect. Disord. 2019, 248, 65–72. [Google Scholar] [CrossRef]
- Altar, C.A. Neurotrophins and depression. Trends Pharmacol. Sci. 1999, 20, 59–62. [Google Scholar] [CrossRef]
- Mohamad Fisal, Z.A.; Minhat, H.S.; Mohd Zulkefli, N.A.; Ahmad, N. Biopsychosocial approach to understanding determinants of depression among men who have sex with men living with HIV: A systematic review. PLoS ONE 2022, 17, e0264636. [Google Scholar] [CrossRef]
- Slomian, J.; Honvo, G.; Emonts, P.; Reginster, J.Y.; Bruyère, O. Consequences of maternal postpartum depression: A systematic review of maternal and infant outcomes. Women’s Health 2019, 15, 1745506519844044. [Google Scholar] [CrossRef]
- Thapar, A.; Eyre, O.; Patel, V.; Brent, D. Depression in young people. Lancet 2022, 400, 617–631. [Google Scholar] [CrossRef]
- Sivertsen, H.; Bjørkløf, G.H.; Engedal, K.; Selbæk, G.; Helvik, A.S. Depression and quality of life in older persons: A review. Dement. Geriatr. Cogn. Disord. 2015, 40, 311–339. [Google Scholar] [CrossRef] [PubMed]
- Carman, J.M. Values and consumption patterns: A closed loop. ACR Nor. Amer Adv. 1978, 5, 403–407. [Google Scholar]
- Cosmas, S.C. Life styles and consumption patterns. J. Consum. Res. 1982, 8, 453–455. [Google Scholar] [CrossRef]
- Statistics Korea. 2022 Elderly Statistics. 2023. Available online: http://kostat.go.kr (accessed on 24 August 2023).
- Cawley, J.; Meyerhoefer, C.; Biener, A.; Hammer, M.; Wintfeld, N. Savings in medical expenditures associated with reductions in body mass index among US adults with obesity, by diabetes status. PharmacoEconomics 2015, 33, 707–722. [Google Scholar] [CrossRef] [PubMed]
- Machlin, S.R.; Soni, A. Peer reviewed: Health care expenditures for adults with multiple treated chronic conditions: Estimates from the medical expenditure panel survey, 2009. Prev. Chronic Dis. 2013, 10, E63. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Jiang, Y.; Li, Y.; Zhang, Y.; Wang, X.; Ma, S.; Wang, Y. Medical expenditure for middle-aged and elderly in Beijing. BMC Health Serv. Res. 2019, 19, 360. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Iwasaki, M.; Yoshihara, A.; Miyazaki, H. Association between periodontitis and medical expenditure in older adults: A 33-month follow-up study. Geriatr. Gerontol. Int. 2016, 16, 856–864. [Google Scholar] [CrossRef]
- Khan, J.A.; Mahumud, R.A. Is healthcare a ‘Necessity’or ‘Luxury’? an empirical evidence from public and private sector analyses of South-East Asian countries? Health Econ. Rev. 2015, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Ingerson, S.; Kim, A.K. Exploring the value of an ethnic restaurant experience: A consumer perspective towards Korean restaurants. Tour. Recreat. Res. 2016, 41, 199–212. [Google Scholar] [CrossRef]
- Tsaur, S.H.; Luoh, H.F.; Syue, S.S. Positive emotions and behavioral intentions of customers in full-service restaurants: Does aesthetic labor matter? Int. J. Hosp. Manag. 2015, 51, 115–126. [Google Scholar] [CrossRef]
- Sthapit, E. Memories of gastronomic experiences, savoured positive emotions and savouring processes. Scand. J. Hosp. Tour. 2019, 19, 115–139. [Google Scholar] [CrossRef]
- Kim, D.; Ahn, B.I. Eating out and consumers’ health: Evidence on obesity and balanced nutrition intakes. Int. J. Environ. Res. Public Health 2020, 17, 586. [Google Scholar] [CrossRef]
- Nicklas, T.A.; Baranowski, T.; Cullen, K.W.; Berenson, G. Eating patterns, dietary quality and obesity. J. Am. Coll. Nutr. 2001, 20, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Liberali, R.; Kupek, E.; Assis, M. Dietary patterns and childhood obesity risk: A systematic review. Child. Obes. 2020, 16, 70–85. [Google Scholar] [CrossRef]
- Easterlin, R.A. Diminishing marginal utility of income? Caveat emptor. Soc. Indic. Res. 2005, 70, 243–255. [Google Scholar] [CrossRef]
- Brewer, P.; Venaik, S. GLOBE practices and values: A case of diminishing marginal utility? J. Int. Bus. Stud. 2010, 41, 1316–1324. [Google Scholar] [CrossRef]
- Taylor, D. Physical activity is medicine for older adults. Postgrad. Med. J. 2014, 90, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Karacabey, K. Effect of regular exercise on health and disease. Neuroendocrinol. Lett. 2005, 26, 617–623. [Google Scholar] [PubMed]
- De Moor, M.H.; Beem, A.L.; Stubbe, J.H.; Boomsma, D.I.; De Geus, E.J. Regular exercise, anxiety, depression and personality: A population-based study. Prev. Med. 2006, 42, 273–279. [Google Scholar] [CrossRef]
- Kanamori, S.; Takamiya, T.; Inoue, S.; Kai, Y.; Kawachi, I.; Kondo, K. Exercising alone versus with others and associations with subjective health status in older Japanese: The JAGES Cohort Study. Sci. Rep. 2016, 6, 39151. [Google Scholar] [CrossRef]
- Zhang, S.; Xiang, K.; Li, S.; Pan, H.F. Physical activity and depression in older adults: The knowns and unknowns. Psychiatry Res. 2021, 297, 113738. [Google Scholar] [CrossRef]
- Callow, D.D.; Arnold-Nedimala, N.A.; Jordan, L.S.; Pena, G.S.; Won, J.; Woodard, J.L.; Smith, J.C. The mental health benefits of physical activity in older adults survive the COVID-19 pandemic. Am. J. Geriatr. Psychiatry 2020, 28, 1046–1057. [Google Scholar] [CrossRef]
- Helliwell, J.F. Determinants of well-being and their implications for health care. Ann. Nutr. Metab. 2019, 74, 8–14. [Google Scholar] [CrossRef]
- Paakkari, O.; Torppa, M.; Kannas, L.; Paakkari, L. Subjective health literacy: Development of a brief instrument for school-aged children. Scand. J. Public Health 2016, 44, 751–757. [Google Scholar] [CrossRef]
- von Steinbuechel, N.; Richter, S.; Morawetz, C.; Riemsma, R. Assessment of subjective health and health-related quality of life in persons with acquired or degenerative brain injury. Curr. Opin. Neurol. 2005, 18, 681–691. [Google Scholar] [CrossRef]
- Wei, N.; Sun, D.; Huang, W. Effects of WeChat use on the subjective health of older adults. Front. Psychol. 2022, 13, 919889. [Google Scholar] [CrossRef]
- Othman, N.; Ahmad, F.; El Morr, C.; Ritvo, P. Perceived impact of contextual determinants on depression, anxiety and stress: A survey with university students. Int. J. Ment. Health Syst. 2019, 13, 17. [Google Scholar] [CrossRef]
- Breidenbach, C.; Heidkamp, P.; Hiltrop, K.; Pfaff, H.; Enders, A.; Ernstmann, N.; Kowalski, C. Prevalence and determinants of anxiety and depression in long-term breast cancer survivors. BMC Psychiatry 2022, 22, 101. [Google Scholar] [CrossRef]
- Smith, I.C.; White, S.W. Socio-emotional determinants of depressive symptoms in adolescents and adults with autism spectrum disorder: A systematic review. Autism 2020, 24, 995–1010. [Google Scholar] [CrossRef]
- Sahni, B.; Bala, K.; Kumar, T.; Narangyal, A. Prevalence and determinants of geriatric depression in North India: A cross-sectional study. J. Fam. Med. Prim. Care 2020, 9, 2332. [Google Scholar]
- Ademola, A.D.; Boima, V.; Odusola, A.O.; Agyekum, F.; Nwafor, C.E.; Salako, B.L. Prevalence and determinants of depression among patients with hypertension: A cross-sectional comparison study in Ghana and Nigeria. Niger. J. Clin. Pract. 2019, 22, 558–565. [Google Scholar]
- Chou, K.L.; Chi, I.; Boey, K.W. Determinants of depressive symptoms among elderly Chinese living alone. Clin. Gerontol. 2000, 20, 15–27. [Google Scholar] [CrossRef]
- Shahar, S.; Hassan, J.; Sundar, V.V.; Kong, A.; Chin, S.; Ahmad, S.; Lee, L. Determinants of depression and insomnia among institutionalized elderly people in Malaysia. Asian J. Psychiatry 2011, 4, 188–195. [Google Scholar] [CrossRef]
- Zenebe, Y.; Akele, B.; Necho, M. Prevalence and determinants of depression among old age: A systematic review and meta-analysis. Ann. Gen. Psychiatry 2021, 20, 55. [Google Scholar] [CrossRef]
- Cénat, J.M.; Farahi, S.; Dalexis, R.D. Prevalence and determinants of depression, anxiety, and stress symptoms among Black individuals in Canada in the context of the COVID-19 pandemic. Psychiatry Res. 2023, 326, 115341. [Google Scholar] [CrossRef]
- Wegbom, A.I.; Edet, C.K.; Ogba, A.; Osaro, B.; Harry, A.; Pepple, B.; Fagbamigbe, A.F. Determinants of depression, anxiety, and stress among pregnant women attending tertiary hospitals in urban centers, Nigeria. Women 2023, 3, 41–52. [Google Scholar] [CrossRef]
- Li, X.; Hsee, C.K. The psychology of marginal utility. J. Consum. Res. 2021, 48, 169–188. [Google Scholar] [CrossRef]
- Cardon, J.H.; Hendel, I. Asymmetric information in health insurance: Evidence from the National Medical Expenditure Survey. RAND J. Econ. 2001, 32, 408–427. [Google Scholar] [CrossRef]
- Liu, Y.; Rao, K.; Hsiao, W.C. Medical expenditure and rural impoverishment in China. J. Health Popul. Nutr. 2003, 21, 216–222. [Google Scholar]
- Romaire, M.A.; Bell, J.F. The medical home, preventive care screenings, and counseling for children: Evidence from the Medical Expenditure Panel Survey. Acad. Pediatr. 2010, 10, 338–345. [Google Scholar] [CrossRef]
- Horner-Johnson, W.; Dobbertin, K.; Lee, J.C.; Andresen, E.M.; Expert Panel on Disability and Health Disparities. Disparities in health care access and receipt of preventive services by disability type: Analysis of the medical expenditure panel survey. Health Serv. Res. 2014, 49, 1980–1999. [Google Scholar] [CrossRef]
- Klaus, P. Luxury patient experience (LPX): Review, conceptualization, and future research directions. Serv. Ind. J. 2018, 38, 87–98. [Google Scholar] [CrossRef]
- Ward, Z.J.; Bleich, S.N.; Long, M.W.; Gortmaker, S.L. Association of body mass index with health care expenditures in the United States by age and sex. PLoS ONE 2021, 16, e0247307. [Google Scholar] [CrossRef]
- Huh, C.; Lee, M.J.; Lee, S. A profile of spa-goers in the US luxury hotels and resorts: A posteriori market segmentation approach. J. Hosp. Mark. Manag. 2019, 28, 1032–1052. [Google Scholar]
- Kreuzer, M.; Cado, V.; Raïes, K. Moments of care: How interpersonal interactions contribute to luxury experiences of healthcare consumers. J. Bus. Res. 2020, 116, 482–490. [Google Scholar] [CrossRef]
- Sykes, K.J. Short-term medical service trips: A systematic review of the evidence. Am. J. Public Health 2014, 104, e38–e48. [Google Scholar] [CrossRef]
- Yoon, H.; Lee, W.S.; Kim, K.B.; Moon, J. Effects of leisure participation on life satisfaction in older Korean adults: A panel analysis. Int. J. Environ. Res. Public Health 2020, 17, 4402. [Google Scholar] [CrossRef]
- Sharma, A. Self-rationing efficiency of repeated eating-out expenses: Does experience matter? J. Hosp. Tour. Res. 2017, 41, 259–277. [Google Scholar] [CrossRef]
- Kim, S.; Park, E.; Xu, M. Beyond the authentic taste: The tourist experience at a food museum restaurant. Tour. Manag Pers. 2020, 36, 100749. [Google Scholar] [CrossRef]
- Ahl, R.E.; Cook, E.; McAuliffe, K. Having less means wanting more: Children hold an intuitive economic theory of diminishing marginal utility. Cognition 2023, 234, 105367. [Google Scholar] [CrossRef]
- Das, S.; Hittinger, E.; Williams, E. Learning is not enough: Diminishing marginal revenues and increasing abatement costs of wind and solar. Renew. Energy 2020, 156, 634–644. [Google Scholar] [CrossRef]
- Laforge, R.; Rossi, J.; Prochaska, J.; Velicer, W.; Levesque, D.; McHorney, C. Stage of regular exercise and health-related quality of life. Prev. Med. 1999, 28, 349–360. [Google Scholar] [CrossRef]
- Martinsen, E.W. Benefits of exercise for the treatment of depression. Sports Med. 1990, 9, 380–389. [Google Scholar] [CrossRef]
- Lindwall, M.; Rennemark, M.; Halling, A.; Berglund, J.; Hassmén, P. Depression and exercise in elderly men and women: Findings from the Swedish national study on aging and care. J. Aging Phys. Act. 2007, 15, 41–55. [Google Scholar] [CrossRef]
- Lim, E.J.; Hyun, E.J. The impacts of pilates and yoga on health-promoting behaviors and subjective health status. Int. J. Environ. Res. Public Health 2021, 18, 3802. [Google Scholar] [CrossRef]
- George, E.K.; Reddy, P.H. Can healthy diets, regular exercise, and better lifestyle delay the progression of dementia in elderly individuals? J. Alzheimer’s Dis. 2019, 72, S37–S58. [Google Scholar] [CrossRef]
- Osali, A. Aerobic exercise and nano-curcumin supplementation improve inflammation in elderly females with metabolic syndrome. Diabetol. Metab. Syndr. 2020, 12, 26. [Google Scholar] [CrossRef]
- Boo, Y.Y.; Jutila, O.E.; Cupp, M.A.; Manikam, L.; Cho, S.I. The identification of established modifiable mid-life risk factors for cardiovascular disease which contribute to cognitive decline: Korean Longitudinal Study of Aging (KLoSA). Aging Clin. Exp. Res. 2021, 33, 2573–2586. [Google Scholar] [CrossRef]
- Moon, J.; Lee, W.S.; Shim, J. Exploring Korean middle-and old-aged citizens’ subjective health and quality of life. Behav. Sci. 2022, 12, 219. [Google Scholar] [CrossRef]
- Yang, J.M.; Lee, H.J.; Kim, J.H. Association between Occupational Change Trajectories and Mental Health: Results from the Korean Longitudinal Study of Aging. Int. J. Ment. Health Promot. 2023, 25, 579–594. [Google Scholar] [CrossRef]
- Baltagi, B. Econometric Analysis of Panel Data (Vol. 1); John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Wooldridge, J. Introductory Econometrics: A Modern Approach; South-Western College Publishing: Cincinnati, OH, USA, 2009. [Google Scholar]
- Gujarati, D.; Porter, D. Basic Econometrics; McGraw-Hill: New York, NY, USA, 2009. [Google Scholar]
- Ciaccioni, S.; Pesce, C.; Forte, R.; Presta, V.; Di Baldassarre, A.; Capranica, L.; Condello, G. The interlink among age, functional fitness, and perception of health and quality of life: A mediation analysis. Int. J. Environ. Res. Public Health 2022, 19, 6850. [Google Scholar] [CrossRef]
- Palumbo, F.; Ciaccioni, S.; Guidotti, F.; Forte, R.; Sacripanti, A.; Capranica, L.; Tessitore, A. Risks and benefits of Judo training for middle-aged and older people: A systematic review. Sports 2023, 11, 68. [Google Scholar] [CrossRef]
- Lin, C.C.; Peng, S.S. The role of diminishing marginal utility in the ordinal and cardinal utility theories. Aust. Econ. Pap. 2019, 58, 233–246. [Google Scholar] [CrossRef]
Variable | Measurement |
---|---|
Subjective health (SHE) | 1 = very poor; 5 = very good |
Depression (DEP) | 1 = rarely; 4 = always |
Medical expenses (MDE) | Monthly medical expenses (unit: KRW 10,000) |
Eating-out expenses (EOE) | Monthly eating-out expenses (unit: KRW 10,000) |
Regular exercise (RGE) | 0 = no; 1 = yes (once a week) |
Sex (SEX) | 0 = male; 1 = female |
Age (AGE) | Physical age of survey participants |
Personal assets (PAS) | Personal assets (KRW 10,000) |
COVID-19 (COV) | 0 = 2018; 1 = 2020 |
Variable | Mean | SD | Minimum | Maximum | Skewness | Kurtosis |
---|---|---|---|---|---|---|
SHE | 2.9 | 0.85 | 1 | 5 | 0 | 0 |
DEP | 1.48 | 0.72 | 1 | 4 | 0 | 0 |
MDE | 10.26 | 18.9 | 0 | 1000 | 0 | 0 |
EOE | 9.49 | 10.54 | 0 | 150 | 0 | 0 |
RGE | 0.35 | 0.47 | 0 | 1 | 0 | 0 |
SEX | 0.35 | 0.47 | 0 | 1 | 0 | - |
AGE | 72.1 | 9.19 | 57 | 102 | 0 | 0 |
PAS | 30,935.33 | 42,081.95 | 0 | 818,000 | 0 | 0 |
COV | 0.49 | 0.49 | 0 | 1 | 0.86 | - |
Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
1. SHE | 1 | ||||||
2. DEP | −0.0314 * | 1 | |||||
3. MDE | −0.078 * | 0.072 * | 1 | ||||
4. EOE | 0.122 * | −0.064 * | 0.125 * | 1 | |||
5. RGE | 0.097 * | −0.067 * | 0.011 | 0.183 * | 1 | ||
6. SEX | 0.104 * | −0.031 * | 0.023 * | 0.070 * | 0.041 * | 1 | |
7. AGE | −0.397 * | 0.179 * | 0.018 | −0.198 * | −0.061 * | −0.030 * | 1 |
8. PAS | 0.105 * | −0.046 * | 0.101 * | 0.0341 * | 0.160 * | 0.048 * | −0.085 * |
Variable | Model1 OLS β (t-Stat) | Model2 RE β (Wald) | Model3 FE β (t-Stat) | VIF |
---|---|---|---|---|
Intercept | 5.314 (68.58) ** | 5.314 (68.58) ** | 5.314 (68.56) ** | |
MDE | −0.007 (−10.85) ** | −0.007 (−10.85) ** | −0.007 (−10.85) ** | 2.19 |
MDE2 | 8.32 × 10−6 (7.53) ** | 8.32 × 10−6 (7.53) ** | 8.32 × 10−6 (7.53) ** | 2.15 |
EOE | 0.006 (3.72) ** | 0.006 (3.72) ** | 0.006 (3.72) ** | 3.56 |
EOE2 | −9.10 × 10−5 (−3.23) ** | −9.10 × 10−5 (−3.23) ** | −9.10 × 10−5 (−3.23) ** | 3.2 |
RGE | 0.094 (4.88) ** | 0.094 (4.89) ** | 0.094 (4.88) ** | 1.05 |
SEX | 0.156 (8.09) ** | 0.156 (8.23) ** | 0.156 (8.09) ** | 1.01 |
AGE | −0.034 (−34.05) ** | −0.034 (−34.29) ** | −0.034 (−34.05) ** | 1.06 |
PAS | 1.35 × 10−6 (5.83) ** | 1.35 × 10−6 (5.84) ** | 1.35 × 10−6 (5.83) ** | 1.16 |
COV | - | - | 0.001 (0.05) | |
F-value | 210.58 ** | - | 187.15 ** | |
Wald χ2 | - | 1684.61 ** | - | |
R2 | 0.1908 | 0.1623 | 0.1908 |
Variable | Model4 OLS β (t-Stat) | Model5 RE β (Wald) | Model6 FE β (t-Stat) | VIF |
---|---|---|---|---|
Intercept | 0.589 (8.01) ** | 0.589 (8.18) ** | 0.585 (7.95) ** | |
MDE | 0.004 (4.88) ** | 0.004 (6.24) ** | 0.004 (4.87) ** | 2.19 |
MDE2 | −2.78 × 10−6 (−3.24) ** | −2.78 × 10−6 (−2.70) ** | −2.79 × 10−6 (−3.26) ** | 2.15 |
EOE | −0.003 (−2.39) ** | −0.003 (−2.30) ** | −0.003 (−2.37) ** | 3.56 |
EOE2 | 3.91 × 10−5 (1.77) * | 3.91 × 10−5 (1.49) | 3.98 × 10−5 (1.80) * | 3.2 |
RGE | −0.074 (−4.20) ** | −0.074 (−4.12) ** | −0.071 (−4.03) ** | 1.05 |
SEX | −0.034 (−1.92) * | −0.034 (−1.93) * | −0.026 (1.44) | 1.01 |
AGE | 0.012 (13.16) ** | 0.012 (13.74) ** | 0.013 (13.28) ** | 1.06 |
PAS | −4.21 × 10−7 (−2.22) ** | −4.21 × 10−7 (−1.96) * | −4.15 × 10−7 (−2.18) ** | 1.16 |
COV | - | - | −0.044 (−2.55) ** | |
F-value | 39.41 ** | - | 35.14 ** | |
Wald χ2 | - | 319.63 ** | - | |
R2 | 0.0428 | 0.0428 | 0.0437 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, K.-A.; Moon, J. Exploration of the Determinants of Subjective Health and Depression Using Korean Longitudinal Study of Aging Data. Healthcare 2024, 12, 1424. https://doi.org/10.3390/healthcare12141424
Sun K-A, Moon J. Exploration of the Determinants of Subjective Health and Depression Using Korean Longitudinal Study of Aging Data. Healthcare. 2024; 12(14):1424. https://doi.org/10.3390/healthcare12141424
Chicago/Turabian StyleSun, Kyung-A, and Joonho Moon. 2024. "Exploration of the Determinants of Subjective Health and Depression Using Korean Longitudinal Study of Aging Data" Healthcare 12, no. 14: 1424. https://doi.org/10.3390/healthcare12141424
APA StyleSun, K. -A., & Moon, J. (2024). Exploration of the Determinants of Subjective Health and Depression Using Korean Longitudinal Study of Aging Data. Healthcare, 12(14), 1424. https://doi.org/10.3390/healthcare12141424