Enhancing Operating Room Efficiency: The Impact of Computational Algorithms on Surgical Scheduling and Team Dynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hospital Description
2.2. Study Premises
2.3. Analyzed Indicators
2.4. Measures to Improve Operating Room Scheduling
2.5. The Main Measures Taken
2.6. Calculation Algorithm
- -
- The occupancy rate of the operating theaters (to avoid overcrowding).
- -
- The percentage of operations performed in each time interval (to evenly distribute the operations).
- -
- The average duration of operations (to optimize the scheduling of longer procedures).
2.7. Statistical Analysis
2.8. Ethics Notice
3. Results
3.1. Surgical Interventions in All Specialties
3.2. Duration of Surgery
3.3. Comparison of Operating Room Utilization Efficiency: Without Algorithm vs. with Computational Algorithm
3.3.1. Occupancy of the Room without a Computational Algorithm (2023)
3.3.2. Occupancy of the Room with a Computational Algorithm (2024)
- -
- Optimized Utilization: a significant increase in occupancy was achieved during peak slots, such as from 86.17% in 2023 to 96.31% in 2024 between 9:00 and 10:00, and from 88.88% in 2023 to 99.82% in 2024 between 10:00 and 11:00.
- -
- Balanced Distribution: the improved recommendation score led to a better distribution of operations throughout the day, avoiding overcrowding in the morning and underutilization after lunch.
- -
- Increased Flexibility: operating rooms were used more efficiently, reducing downtime and allowing greater flexibility in scheduling operations.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agency for Healthcare Research and Quality. (February 2014). Characteristics of Operating Room Procedures in U.S. Hospitals, 2011. Healthcare Cost and Utilization Project. Statistical Brief #170. Available online: http://www.hcup-us.ahrq.gov/reports/statbriefs/sb170-Operating-Room-Procedures-United-States-2011.pdf (accessed on 26 August 2024).
- Weiss, R. The Impact of Block Scheduling and Release Time on Operating Room Efficiency, 2014. All Theses. 1875. Available online: https://tigerprints.clemson.edu/all_theses/1875 (accessed on 29 August 2024).
- Dexter, F.; Traub, R.D. How to schedule elective surgical cases into specific operating rooms to maximize the efficiency of use of operating room time. Anesth. Analg. 2002, 94, 933–942. [Google Scholar] [CrossRef] [PubMed]
- Denton, B.J.; Viapiano, J.; Vogl, A. Optimization of surgery sequencing and scheduling decisions under uncertainty. Health Care Manag. Sci. 2007, 10, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Van Houdenhoven, M.; van Oostrum, J.M.; Wullink, G.; Hans, E.; Hurink, J.L.; Bakker, J.; Kazemier, G. Fewer intensive care unit refusals and a higher capacity utilization by using a cyclic surgical case schedule. J. Crit. Care 2008, 23, 222–226. [Google Scholar] [CrossRef]
- Agnetis, A.; Coppi, A.; Corsini, M.; Dellino, G.; Meloni, C.; Pranzo, M. A decomposition approach for the combined master surgical schedule and surgical case assignment problems. Health Care Manag. Sci. 2013, 17, 49–59. [Google Scholar] [CrossRef]
- Van Houdenhoven, M.; van Oostrum, J.M.; Hans, E.W.; Wullink, G.; Kazemier, G. Improving operating room efficiency by applying bin-packing and portfolio techniques to surgical case scheduling. Anesth. Analg. 2007, 105, 707–714. [Google Scholar] [CrossRef]
- Lehtonen, J.M.; Torkki, P.; Peltokorpi, A.; Moilanen, T. Increasing operating room productivity by duration categories and a newsvendor model. Int. J. Health Care Qual. Assur. 2013, 26, 80–92. [Google Scholar] [CrossRef]
- Stepaniak, P.S.; Mannaerts, G.H.H.; de Quelerij, M.; de Vries, G. The effect of the operating Room coordinator’s risk appreciation on operating room efficiency. Anesth. Analg. 2009, 108, 1249–1256. [Google Scholar] [CrossRef]
- Cardoen, B.; Demeulemeester, E.; Van der Hoeven, J. On the use of planning models in the operating theatre: Results of a survey in Flanders. Int. J. Health Plan. Manag. 2010, 25, 400–414. [Google Scholar] [CrossRef]
- Schouten, A.M.; Flipse, S.M.; van Nieuwenhuizen, K.E.; Jansen, F.W.; van der Eijk, A.C.; van den Dobbelsteen, J.J. Operating Room Performance Optimization Metrics: A Systematic Review. J. Med. Syst. 2023, 47, 19. [Google Scholar] [CrossRef]
- Strum, D.P.; Vargas, L.G.; May, J.H.; Bashein, G. Surgical suite utilization and capacity planning: A minimal cost analysis model. J. Med. Syst. 1997, 21, 309–322. [Google Scholar] [CrossRef]
- Hosseini, N.; Taaffe, K.M. Allocating operating room block time using historical caseload variability. Healthc. Manag. Sci. 2014, 18, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Blake, J.T.; Donald, J. Mount Sinai Hospital uses integer programming to allocate operating room time. Interfaces 2002, 32, 63–73. [Google Scholar] [CrossRef]
- Dexter, F.; Blake, J.; Penning, D.; Lubarsky, D. Calculating a potential increase in hospital margin for elective surgery by changing operating room time allocations or increasing nursing staffing to permit completion of more cases: A case study. Anesth. Analg. 2002, 94, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Kuo, P.C.; Schroeder, R.A.; Mahaffey, S.; Bollinger, R.R. Optimization of operating room allocation using linear programming techniques. J. Am. Coll. Surg. 2003, 197, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Shamayleh, A.; Fowler, J.; Zhang, M. Operating Room Capacity Planning Decisions. Int. J. Archit. Environ. Eng. 2012, 6, 665–669. [Google Scholar]
- Denton, B.T.; Miller, A.J.; Balasubramanian, H.J.; Huschka, T.R. Optimal allocation of surgery blocks to operating rooms under uncertainty. Oper. Res. 2010, 58, 802–816. [Google Scholar] [CrossRef]
- Wright, J.G.; Roche, A.; Khoury, A.E. Improving on-time surgical starts in an operating room. Can. J. Surg. 2010, 53, 167. [Google Scholar]
- Cardoen, B.; Demeulemeester, E.; Beliën, J. Operating room planning and scheduling: A literature review. Eur. J. Oper. Res. 2010, 201, 921–932. [Google Scholar] [CrossRef]
- Van Riet, C.; Demeulemeester, E. Trade-offs in operating room planning for electives and emergencies: A review. Oper. Res. Health Care 2015, 7, 52–69. [Google Scholar] [CrossRef]
- MacCormick, A.D.; Collecutt, W.G.; Parry, B.R. Prioritizing patients for elective surgery: A systematic review. ANZ J. Surg. 2003, 73, 633–642. [Google Scholar] [CrossRef]
- Kelly, P.D.; Fanning, J.B.; Drolet, B. Operating room time as a limited resource: Ethical considerations for allocation. J. Med. Ethics. 2022, 48, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Erdogan, S.A.; Denton, B.T.; Cochran, J.J.; Cox, L.; Keskinocak, P.; Kharoufeh, J.; Smith, J. Surgery Planning and Scheduling. In Wiley Encyclopedia of Operations Research and Management Science; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- COVID-19: Guidance for Triage of Non-Emergent Surgical Procedures [Webpage]; American College of Surgeons: Chicago, IL, USA, 2020; Available online: https://www.facs.org/covid-19/clinical-guidance/triage (accessed on 20 August 2024).
- Ehresman, J.; Ahmed, A.K.; Lubelski, D.; Pennington, Z.; Jiang, B.; Zygourakis, C.; Cottrill, E.; Theodore, N. Assessment of a Triage Protocol for Emergent Neurosurgical Cases at a Single Institution. World Neurosurg. 2020, 135, e386–e392. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.; Zygourakis, C.; Kalb, S.; Pennington, Z.; Molina, C.; Emerson, T.; Theodore, N. Protocol for Urgent and Emergent Cases at a Large Academic Level 1 Trauma Center. Cureus 2019, 11, e3973. [Google Scholar] [CrossRef] [PubMed]
- Lebowitz, P. Schedule the short procedure first to improve OR efficiency. AORN J. 2003, 78, 657–659. [Google Scholar] [CrossRef] [PubMed]
- Dexter, F.; Traub, R.D.; Macario, A. How to release allocated operating room time to increase efficiency: Predicting which surgical service will have the most underutilized time. Anesth. Analg. 1999, 89, 940–946. [Google Scholar]
- May, J.H.; Spangler, W.E.; Strum, D.P.; Vargas, L.G. The surgical scheduling problem: Current research and future opportunities. Prod. Oper. Manag. 2011, 20, 392–405. [Google Scholar] [CrossRef]
- Dexter, F.; Macario, A.; Traub, R.D. Optimal sequencing of urgent surgical cases: An observational study of predicted earliest start times for emergency cases to minimize waiting times in operating rooms. Anesth. Analg. 2002, 94, 1370–1376. [Google Scholar]
- Strum, D.P.; Vargas, L.G.; May, J.H. Surgical subspecialty block utilization and capacity planning: A minimal cost analysis model. Anesthesiology 2000, 92, 1357–1365. [Google Scholar]
- Santibáñez, P.; Chow, V.S.; French, J.; Puterman, M.L.; Tyldesley, S. Reducing patient wait times and improving resource utilization at British Columbia Cancer Agency’s ambulatory care unit through simulation. Health Care Manag. Sci. 2007, 10, 367–385. [Google Scholar] [CrossRef]
- Lamiri, M.; Xie, X.; Zhang, S. Stochastic optimization of surgery planning and scheduling: A literature review. Int. J. Prod. Res. 2008, 46, 6673–6685. [Google Scholar]
- Jones, S.; Joy, M.; Pearson, M. The use of machine learning algorithms in operating room scheduling: A systematic review. J. Med. Syst. 2017, 41, 108. [Google Scholar]
- Zhang, X.; Lu, M.; Zhang, J. Operating room scheduling using reinforcement learning and simulation-based optimization. J. Oper. Res. Soc. 2020, 71, 951–967. [Google Scholar]
- Cunningham, A.J. Improving operating room productivity and efficiency—Are there any simple strategies? Rom. J. Anaesth. Intensive Care. 2017, 24, 87–88. [Google Scholar] [CrossRef] [PubMed]
- Zaha, D.C.; Jurca, M.C.; Daina, C.; Babeș, V.V.; Petcheși, C.D.; Jurca, A.D.; Vesa, C.; Codreanu, I.C.; Babeș, E.E. Current data about the aetiology and treatment of infective endocarditis. Farmacia 2022, 70, 837–849. [Google Scholar] [CrossRef]
- Hodoșan, V.; Daina, C.M.; Zaha, D.C.; Cotrău, P.; Vladu, A.; Pantiș, C.; Dorobanțu, F.R.; Negrău, M.; Maghiar, A.; Daina, L.G. Pattern of Antibiotic Use in the Perinatal Period in a Public University Hospital in Romania. Medicina 2022, 58, 772. [Google Scholar] [CrossRef]
- Beyranvand, T.; Aryankhesal, A.; Aghaei Hashjin, A. Quality improvement in hospitals’ surgery-related processes: A systematic review. Med. J. Islam. Repub. Iran. 2019, 33, 129. [Google Scholar] [CrossRef]
- Counte, M.A.; Meurer, S. Issues in the assessment of continuous quality improvement implementation in health care organizations. Int. J. Qual. Health Care 2001, 13, 197–207. [Google Scholar] [CrossRef]
- Harrigan, M. Quest for Quality in Canadian Health Care: Continuous Quality Improvement; Health Promotion and Programs Branch, Health Canada: Ottawa, ON, Canada, 2000. [Google Scholar]
- Ministerul Sănătăţii Institutul Naţional de Boli Infecţioase. 2019. Available online: http://cnlas.ro/images/doc/30062019_rom.pdf (accessed on 3 March 2024).
- O’ Donnell, B.D.; Walsh, K.; Murphy, A.; McElroy, B.; Iohom, G.; Shorten, G.D. An evaluation of operating room throughput in a stand-alone soft-tissue trauma operating room. Rom. J. Anaesth. Intensive Care. 2017, 24, 13–20. [Google Scholar] [CrossRef]
- Fong, A.J.; Smith, M.; Langerman, L. Efficiency improvement in the operating room. J. Surg. Res. 2016, 204, 371–383. [Google Scholar] [CrossRef]
- Mizumoto, R.; Cristaudo, A.T.; Hendahewa, R. A surgeon-lead model to improve operating theatre change-over time and overall efficiency: A randomised controlled trial. Int. J. Surg. 2016, 30, 83–89. [Google Scholar] [CrossRef]
- Friedman, D.M.; Sokal, S.M.; Chang, Y.; Berger, D.L. Increasing operating room efficiency through parallel processing. Ann. Surg. 2006, 243, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Overdyk, F.J.; Harvey, S.C.; Fishman, R.L.; Shippey, F. Successful strategies for improving operating room efficiency at academic institutions. Anesth. Analg. 1998, 86, 896–906. [Google Scholar] [CrossRef] [PubMed]
- Riedl, S. Modern operating room management in the workflow of surgery. Spectrum of tasks and challenges of the future. Anaesthesist 2003, 52, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Haynes, A.B.; Weiser, T.G.; Berry, W.R.; Lipsitz, S.R.; Breizat, A.H.S.; Dellinger, E.P.; Herbosa, T.; Joseph, S.; Kibatala, P.L.; Lapitan, M.C.M.; et al. A surgical safety checklist to reduce morbidity and mortality in a global population. N. Engl. J. Med. 2009, 360, 491–499. [Google Scholar] [CrossRef]
- Minami, C.A.; Sheils, C.R.; Bilimoria, K.Y.; Johnson, J.K.; Berger, E.R.; Berian, J.R.; Englesbe, M.J.; Guillamondegui, O.D.; Hines, L.H.; Cofer, J.B.; et al. Process improvement in surgery, Current problems in surgery. Curr. Probl. Diagn. Radiol. 2016, 53, 62–96. [Google Scholar]
- Bickler, S.W.; Spiegel, D. Improving surgical care in low-and middle-income countries: A pivotal role for the World Health Organization. World J. Surg. 2010, 34, 386–390. [Google Scholar] [CrossRef]
- Ozgediz, D.; Jamison, D.; Cherian, M.; McQueen, K. The burden of surgical conditions and access to surgical care in low-and middle-income countries. Bull. World Health Organ. 2008, 86, 646–647. [Google Scholar]
- Stulberg, J.J.; Delaney, C.P.; Neuhauser, D.V.; Aron, D.C.; Fu, P.; Koroukian, S.M. Adherence to surgical care improvement project measures and the association with postoperative infections. JAMA 2010, 303, 2479–2485. [Google Scholar] [CrossRef]
- Cameron, D.B.; Rangel, S.J. Quality improvement in pediatric surgery. Curr. Opin. Pediatr. 2016, 28, 348–355. [Google Scholar] [CrossRef]
- Hart, C.K.; Ishman, S.L.; Alessandrini, E. Surgical measurement framework: A new framework for quality care in surgical specialties. Perioper. Care Oper. Room Manag. 2016, 2, 28–33. [Google Scholar] [CrossRef]
- Munteanu, G.Z.; Munteanu, Z.V.I.; Daina, C.M.; Daina, L.G.; Coroi, M.C.; Domnariu, C.; Badau, D.; Roiu, G. Study to Identify and Evaluate Predictor Factors for Primary Open-Angle Glaucoma in Tertiary Prophylactic Actions. J. Pers. Med. 2022, 12, 1384. [Google Scholar] [CrossRef] [PubMed]
- Mason, S.; Nicolay, C.; Darzi, A. The use of Lean and Six Sigma methodologies in surgery: A systematic review. Surgeon 2015, 13, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Cima, R.R.; Brown, M.J.; Hebl, J.R.; Moore, R.; Rogers, J.C.; Kollengode, A.; Amstutz, G.J.; Weisbrod, C.A.; Narr, B.J.; Deschamps, C.; et al. Use of lean and six sigma methodology to improve operating room efficiency in a high-volume tertiary-care academic medical center. J. Am. Coll. Surg. 2011, 213, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Aljaffary, A.; AlAnsari, F.; Alatassi, A.; AlSuhaibani, M.; Alomran, A. Assessing the Precision of Surgery Duration Estimation: A Retrospective Study. J. Multidiscip. Healthc. 2023, 16, 1565–1576. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Ríos, M.A.; Abad-Gurumeta, A.; Casans-Francés, R.; Calvo-Vecino, J.M. Keys to optimizing operating room efficiency. Rev. Esp. Anestesiol. Reanim. 2019, 66, 104–112. [Google Scholar] [CrossRef]
- Dexter, F.; Epstein, R.H. Operating room efficiency and scheduling. Curr. Opin. Anaesthesiol. 2005, 18, 195–198. [Google Scholar] [CrossRef]
- Tuwatananurak, J.P.; Zadeh, S.; Xu, X.; Vacanti, J.A.; Fulton, W.R.; Ehrenfeld, J.M.; Urman, R.D. Machine learning can improve estimation of surgical case duration: A pilot study. J. Med. Syst. 2019, 43, 44. [Google Scholar] [CrossRef]
- Puffer, R.C.; Mallory, G.W.; Burrows, A.M.; Curry, T.B.; Clarke, M.J. Patient and procedural factors that influence anesthetized, nonoperative time in spine surgery. Glob. Spine J. 2015, 6, 447–451. [Google Scholar] [CrossRef]
- Luedi, M.M.; Kauf, P.; Mulks, L.; Wieferich, K.; Schiffer, R.; Doll, D. Implications of patient age and ASA physical status for operating room management decisions. Anesth. Analg. 2016, 122, 1169–1177. [Google Scholar] [CrossRef]
- Meneveau, M.O.; Mehaffey, J.H.; Turrentine, F.E.; Shilling, A.M.; Showalter, S.L.; Schroen, A.T. Patient and personnel factors affect operating room start times. Surgery 2020, 167, 390–395. [Google Scholar] [CrossRef]
- Kahloul, M.; Nakhli, M.S.; Jebali, C.; Zaied, H.; Chaouch, A.; Naija, W. Assessment of the operating room efficiency by the real time of room occupancy. Tunis. Med. 2019, 97, 675–680. [Google Scholar] [PubMed]
- Sibhatu, M.K.; Getachew, E.M.; Bete, D.Y.; Gebreegziabher, S.B.; Kumsa, T.H.; Shagre, M.B.; Merga, K.H.; Taye, D.B.; Bashir, H.M.; Yicheneku, M.T.; et al. Surgical System Efficiency and Operative Productivity in Public and Private Health Facilities in Ethiopia: A Cross-Sectional Evaluation. Glob. Health Sci. Pract. 2024, 12, e2200277. [Google Scholar] [CrossRef] [PubMed]
- Serra-Sutton, V.; Solans-Domènech, M.; Espallargues-Carreras, M. Eficiencia en la Utilización de Bloques Quirúrgicos. Definición de Indicadores; Plan de Calidad para el Sistema Nacional de Salud; Ministerio de Ciencia e Innovación: Madrid, Spain, 2011; p. 105. [Google Scholar]
- Tyler, D.C.; Pasquariello, C.A.; Chen, C.H. Determining optimum operating room utilization. Anesth. Analg. 2003, 96, 1114–1121. [Google Scholar] [CrossRef] [PubMed]
- Dexter, F.; Epstein, R.H.; Marcon, E.; Ledolter, J. Estimating the incidence of prolonged turnover times and delays by time of day. Anesthesiology 2005, 102, 1242–1248. [Google Scholar] [CrossRef]
- Ong, B.S.; Thomas, R.; Jenkins, S. Introducing the “Twilight” operating room concept: A feasibility study to improve operating room utilization. Patient Saf. Surg. 2022, 16, 23. [Google Scholar] [CrossRef]
Hours | January–June 2023 (n = 4652) | January–June 2024 (n = 4631) |
---|---|---|
8–9 | 13.12 | 15.35 |
9–10 | 15.52 | 16.78 |
10–11 | 15.83 | 14.82 |
11–12 | 14.89 | 13.97 |
12–13 | 11.94 | 12.68 |
13–14 | 9.95 | 9.76 |
14–15 | 7.16 | 6.70 |
15–16 | 4.20 | 3.35 |
16–17 | 3.00 | 2.52 |
17–18 | 2.14 | 2.39 |
18–19 | 2.24 | 1.68 |
Hours | January–June 2023 | January–June 2024 | p |
---|---|---|---|
8–10 | 28.65 | 32.13 | p < 0.0001 |
8–12 | 59.37 | 60.92 | p = 0.0310 |
Hours | General Surgery | Plastic Surgery | Orthopedics and Traumatology | Urology | ||||
---|---|---|---|---|---|---|---|---|
Before (n = 1352) | After (n = 1227) | Before (n = 708) | After (n = 532) | Before (n = 1060) | After (n = 1210) | Before (n = 935) | After (n = 991) | |
8–9 | 11.62 | 12.63 | 19.43 | 17.92 | 13.12 | 14.83 | 12.53 | 21.48 |
9–10 | 11.62 | 16.63 | 14.05 | 19.94 | 10.53 | 10.14 | 17.03 | 14.91 |
10–11 | 14.84 | 13.47 | 12.94 | 18.15 | 11.61 | 11.21 | 17.91 | 15.95 |
11–12 | 14.19 | 14.09 | 13.37 | 13.79 | 13.44 | 13.29 | 18.08 | 14.96 |
12–13 | 13.50 | 12.46 | 10.39 | 10.88 | 10.64 | 10.92 | 13.81 | 15.54 |
13–14 | 11.33 | 9.81 | 10.02 | 8.30 | 10.26 | 10.53 | 11.65 | 10.95 |
14–15 | 8.01 | 6.60 | 7.56 | 6.07 | 8.86 | 10.00 | 6.32 | 5.53 |
15–16 | 4.65 | 3.95 | 5.34 | 2.69 | 7.88 | 5.94 | 1.50 | 0.26 |
16–17 | 3.21 | 3.04 | 3.84 | 1.35 | 6.10 | 5.36 | 0.61 | 0.05 |
17–18 | 2.77 | 4.34 | 1.74 | 0.45 | 4.27 | 4.59 | 0.11 | 0.10 |
18–19 | 4.25 | 2.99 | 1.33 | 0.45 | 3.29 | 3.19 | 0.44 | 0.26 |
Specialty | Hours | January–June 2023 | January–June 2024 | p |
---|---|---|---|---|
General surgery | 8–10 | 23.24 | 29.26 | p < 0.0001 |
8–12 | 52.27 | 56.82 | p = 0.0055 | |
Plastic surgery | 8–10 | 33.47 | 37.86 | p = 0.0236 |
8–12 | 59.78 | 69.81 | p < 0.0001 | |
Orthopedics and traumatology | 8–10 | 23.65 | 24.97 | p = 0.3013 |
8–12 | 48.70 | 49.47 | p = 0.6047 | |
Urology | 8–10 | 29.56 | 36.39 | p < 0.0001 |
8–12 | 65.55 | 67.30 | p = 0.2503 |
January–June 2023 (n = 4652) | January–June 2024 (n = 4361) | p | |
---|---|---|---|
Duration (minutes) | 56.00 ± 52.64 | 65.07 ± 60.00 | p < 0.0001 |
Hours | January–June 2023 | January–June 2024 | p | p |
---|---|---|---|---|
8–9 | 20.42 | 23.86 | p = 0.0268 | |
9–10 | 86.17 | 96.31 | p = 0.0016 | |
10–11 | 88.88 | 99.82 | ||
11–12 | 60.18 | 73.20 | ||
12–13 | 41.94 | 49.37 | ||
13–14 | 34.25 | 39.34 | ||
14–15 | 26.62 | 28.80 | ||
15–16 | 17.18 | 16.42 | ||
16–17 | 11.30 | 11.60 | ||
17–18 | 6.62 | 7.21 | ||
18–19 | 5.96 | 7.18 |
Hours | General Surgery | Plastic Surgery | Orthopedics and Traumatology | Urology | ||||
---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | Before | After | |
8–9 | 20.39 | 25.22 | 18.66 | 21.98 | 27.61 | 31.13 | 26.94 | 28.10 |
9–10 | 73.51 | 82.86 | 72.15 | 83.84 | 70.53 | 81.66 | 68.84 | 75.15 |
10–11 | 80.66 | 88.26 | 87.10 | 92.15 | 86.95 | 88.99 | 71.67 | 76.41 |
11–12 | 78.21 | 87.49 | 82.10 | 84.60 | 82.33 | 95.44 | 55.02 | 60.90 |
12–13 | 42.22 | 71.22 | 68.31 | 75.50 | 42.50 | 75.48 | 48.76 | 51.40 |
13–14 | 35.58 | 22.77 | 42.30 | 41.90 | 73.78 | 51.95 | 41.39 | 37.93 |
14–15 | 19.15 | 30.70 | 8.84 | 7.79 | 58.09 | 49.76 | 33.13 | 42.81 |
15–16 | 13.17 | 21.78 | 3.26 | 3.82 | 25.47 | 23.74 | 6.38 | 3.45 |
16–17 | 8.94 | 14.79 | 2.13 | 0.87 | 23.52 | 20.12 | 1.24 | 1.32 |
17–18 | 5.46 | 8.46 | 0.37 | 0.54 | 2.69 | 2.85 | 1.10 | 0.99 |
18–19 | 1.24 | 4.27 | 0.19 | 0.30 | 0.66 | 1.17 | 0.38 | 0.80 |
Specialty | Hours | January–June 2023 | January–June 2024 | p |
---|---|---|---|---|
General surgery | 8–12 | 63.19 | 70.96 | 0.0704 |
Plastic surgery | 8–12 | 65.00 | 70.64 | 0.1865 |
Orthopedics and traumatology | 8–12 | 66.86 | 74.31 | 0.0736 |
Urology | 8–12 | 55.62 | 60.14 | 0.3165 |
Time Interval | Occupancy Rate 2023 (%) | Occupancy Rate 2024 (%) | p | t | p |
---|---|---|---|---|---|
8–9 | 20.42 | 23.86 | 0.125 | −0.354 | 0.727 |
9–10 | 86.17 | 96.31 | 0.050 | ||
10–11 | 88.88 | 99.82 | 0.037 * | ||
11–12 | 60.18 | 73.20 | 0.021 * | ||
12–13 | 41.94 | 49.37 | 0.067 | ||
13–14 | 34.25 | 39.34 | 0.147 | ||
14–15 | 26.62 | 28.80 | 0.315 | ||
15–16 | 17.18 | 16.42 | 0.419 | ||
16–17 | 11.30 | 11.60 | 0.674 | ||
17–18 | 6.62 | 7.21 | 0.289 | ||
18–19 | 5.96 | 7.18 | 0.051 |
Algorithm | Approach | Key Features | Advantages | Limitations | Potential Use Cases | References |
---|---|---|---|---|---|---|
Proposed Algorithm | Custom Scheduling Algorithm | Incorporates team coordination and resource utilization | Enhances workflow efficiency and team dynamics | May require customization for different settings | Hospitals with specific team and resource management needs | [Our study] |
First Come, First Served (FCFS) | Rule-based | Simple, processes cases as they arrive | Easy to implement, no complex calculations | Does not account for priority or resource constraints | Small hospitals with low case complexity | [29] |
Block Scheduling | Rule-based | Reserves specific time slots for departments | Predictable schedule, easy resource allocation | Can lead to underutilization during blocks | Hospitals with regular, predictable caseloads | [30] |
Mixed-Integer Linear Programming (MILP) | Optimization | Solves for optimal allocation of resources and time | Finds globally optimal solutions | Computationally intensive, complex to implement | Large hospitals with diverse and complex caseloads | [31] |
Genetic Algorithms | Heuristic/Metaheuristic | Evolves solutions over iterations | Can handle large, complex problem spaces | May not always find the optimal solution, sensitive to parameter tuning | Complex, variable scheduling environments | [32] |
Simulated Annealing | Heuristic/Metaheuristic | Searches solution space with probabilistic decisions | Can escape local optima, flexible | May require many iterations, sensitive to parameters | Dynamic environments with changing constraints | [33] |
Priority-Based Scheduling | Rule-based | Prioritizes cases based on urgency or other criteria | Efficient for handling emergency cases | Can lead to delays for non-priority cases | Hospitals with high volume of emergency cases | [34] |
Stochastic Optimization | Probabilistic/Optimization | Considers variability in surgery durations | Accounts for uncertainty and variability | Requires accurate probability distributions | Environments with high variability in case lengths | [35] |
Neural Networks | Machine Learning | Learns patterns from historical data | Adaptive to changes, can predict outcomes | Requires large datasets, less interpretable | Hospitals with extensive historical data | [36] |
Reinforcement Learning | Machine Learning | Learns optimal scheduling policies through trial and error | Can adapt to dynamic and complex environments | Needs extensive training, may require simulation | Highly dynamic environments with changing demands | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vladu, A.; Ghitea, T.C.; Daina, L.G.; Țîrț, D.P.; Daina, M.D. Enhancing Operating Room Efficiency: The Impact of Computational Algorithms on Surgical Scheduling and Team Dynamics. Healthcare 2024, 12, 1906. https://doi.org/10.3390/healthcare12191906
Vladu A, Ghitea TC, Daina LG, Țîrț DP, Daina MD. Enhancing Operating Room Efficiency: The Impact of Computational Algorithms on Surgical Scheduling and Team Dynamics. Healthcare. 2024; 12(19):1906. https://doi.org/10.3390/healthcare12191906
Chicago/Turabian StyleVladu, Adriana, Timea Claudia Ghitea, Lucia Georgeta Daina, Dorel Petru Țîrț, and Mădălina Diana Daina. 2024. "Enhancing Operating Room Efficiency: The Impact of Computational Algorithms on Surgical Scheduling and Team Dynamics" Healthcare 12, no. 19: 1906. https://doi.org/10.3390/healthcare12191906
APA StyleVladu, A., Ghitea, T. C., Daina, L. G., Țîrț, D. P., & Daina, M. D. (2024). Enhancing Operating Room Efficiency: The Impact of Computational Algorithms on Surgical Scheduling and Team Dynamics. Healthcare, 12(19), 1906. https://doi.org/10.3390/healthcare12191906