The Frequency and Main Characteristics of Obesity in Undocumented Migrants Receiving Medical Assistance from a Charitable Organisation in Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statistical Analysis
2.2. Ethics Approval
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hajar, R. Framingham Contribution to Cardiovascular Disease. Heart Views 2016, 17, 78–81. [Google Scholar] [CrossRef] [PubMed]
- NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet 2016, 387, 1377–1396, Erratum in Lancet 2016, 387, 1998. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, S.; Hawken, S.; Ôunpuu, S.; Dans, T.; Avezum, A.; Lanas, F.; McQueen, M.; Budaj, A.; Pais, P.; Varigos, J.; et al. INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet 2004, 364, 937–952. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, M.J.; Chin, S.L.; Rangarajan, S.; Xavier, D.; Liu, L.; Zhang, H.; Rao-Melacini, P.; Zhang, X.; Pais, P.; Agapay, S.; et al. INTERSTROKE investigators. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): A case-control study. Lancet 2016, 388, 761–775. [Google Scholar] [CrossRef]
- Susic, D.; Varagic, J. Obesity: A Perspective from Hypertension. Med. Clin. N. Am. 2017, 101, 139–157. [Google Scholar] [CrossRef]
- Malone, J.I.; Hansen, B.C. Does obesity cause type 2 diabetes mellitus (T2DM)? Or is it the opposite? Pediatr. Diabetes 2019, 20, 5–9. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, H.; Cai, J.; Chen, R.; Zuo, X.; Cheng, H.; Yan, D. Association of hypertension and incident diabetes in Chinese adults: A retrospective cohort study using propensity-score matching. BMC Endocr. Disord. 2021, 21, 87. [Google Scholar] [CrossRef]
- GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1459–1544, Erratum in Lancet 2017, 389, e1. [Google Scholar] [CrossRef]
- Teo, K.K.; Rafiq, T. Cardiovascular Risk Factors and Prevention: A Perspective From Developing Countries. Can. J. Cardiol. 2021, 37, 733–743. [Google Scholar] [CrossRef]
- Prabhakaran, D.; Jeemon, P.; Roy, A. Cardiovascular Diseases in India: Current Epidemiology and Future Directions. Circulation 2016, 133, 1605–1620. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, J.; Wang, M.; Zhang, X.; Zhou, M. Epidemiology of cardiovascular disease in China: Current features and implications. Nat. Rev. Cardiol. 2019, 16, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Timmis, A.; Vardas, P.; Townsend, N.; Torbica, A.; Katus, H.; De Smedt, D.; Gale, C.P.; Maggioni, A.P.; Petersen, S.E.; Huculeci, R.; et al. European Society of Cardiology. European Society of Cardiology: Cardiovascular disease statistics 2021. Eur. Heart J. 2022, 43, 716–799, Erratum in Eur. Heart J. 4 February 2022. [Google Scholar] [CrossRef] [PubMed]
- Vandevijvere, S.; De Pauw, R.; Djojosoeparto, S.; Gorasso, V.; Guariguata, L.; Løvhaug, A.L.; Mialon, M.; Van Dam, I.; von Philipsborn, P. Upstream Determinants of Overweight and Obesity in Europe. Curr. Obes. Rep. 2023, 12, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Pledger, S.L.; Ahmadizar, F. Gene-environment interactions and the effect on obesity risk in low and middle-income countries: A scoping review. Front. Endocrinol. 2023, 14, 1230445. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Report on the Health of Refugees and Migrants; Licence: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- PICUM: PICUM Submission to the UN Committee on the Protection of the Right of All Migrant Workers and Members of their Families. 2013. Available online: https://www.ohchr.org/sites/default/files/Documents/HRBodies/CMW/Discussions/2013/DGDMigrationData_PICUM_2013.pdf (accessed on 16 October 2024).
- Jackson, Y.; Paignon, A.; Wolff, H.; Delicado, N. Health of undocumented migrants in primary care in Switzerland. PLoS ONE 2018, 13, e0201313. [Google Scholar] [CrossRef]
- Gimeno-Feliu, L.A.; Pastor-Sanz, M.; Poblador-Plou, B.; Calderón-Larrañaga, A.; Díaz, E.; Prados-Torres, A. Multimorbidity and chronic diseases among undocumented migrants: Evidence to contradict the myths. Int. J. Equity Health 2020, 19, 113. [Google Scholar] [CrossRef]
- van de Sande, J.S.O.; van den Muijsenbergh, M.E.T.C. Undocumented and documented migrants with chronic diseases in Family Practice in the Netherlands. Fam. Pract. 2017, 34, 649–655. [Google Scholar] [CrossRef]
- Mona, H.; Andersson, L.M.C.; Hjern, A.; Ascher, H. Barriers to accessing health care among undocumented migrants in Sweden—A principal component analysis. BMC Health Serv. Res. 2021, 21, 830. [Google Scholar] [CrossRef]
- Fu, L.; Lindenmeyer, A.; Phillimore, J.; Lessard-Phillips, L. Vulnerable migrants’ access to healthcare in the early stages of the COVID-19 pandemic in the UK. Public Health 2022, 203, 36–42. [Google Scholar] [CrossRef]
- Filmer, T.; Ray, R.; Glass, B.D. Barriers and facilitators experienced by migrants and refugees when accessing pharmaceutical care: A scoping review. Res. Soc. Adm. Pharm. 2023, 19, 977–988. [Google Scholar] [CrossRef]
- Finnigan, C.; Brown, J.; Al-Adeimi, M.; Al-Abed, R. Barriers to Accessing Mental Health Services by Migrant Youth. Community Ment. Health J. 2022, 58, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Kanengoni-Nyatara, B.; Watson, K.; Galindo, C.; Charania, N.A.; Mpofu, C.; Holroyd, E. Barriers to and Recommendations for Equitable Access to Healthcare for Migrants and Refugees in Aotearoa, New Zealand: An Integrative Review. J. Immigr. Minor. Health 2024, 26, 164–180. [Google Scholar] [CrossRef] [PubMed]
- Obesity: Identification, assessment and management. NICE Guideline, No. 189; National Institute for Health and Care Excellence (NICE): London, UK, 2023; ISBN-13: 978-1-4731-5285-4. [Google Scholar]
- World Health Organization. The Asia-Pacific Perspective: Redefining Obesity and Its Treatment. Available online: https://iris.who.int/handle/10665/206936 (accessed on 16 October 2024).
- WHO. Waist Circumference and Waist–Hip Ratio: Report of a WHO Expert Consultation, Geneva, 8–11 December 2008; World Health Organization: Geneva, Switzerland, 2011; ISBN 978 92 4 150149 1. [Google Scholar]
- Gupta, R.D.; Parray, A.A.; Kothadia, R.J.; Pulock, O.S.; Pinky, S.D.; Haider, S.S.; Akonde, M.; Haider, M.R. The association between body mass index and abdominal obesity with hypertension among South Asian population: Findings from nationally representative surveys. Clin. Hypertens. 2024, 30, 3. [Google Scholar] [CrossRef] [PubMed]
- Nevill, A.M.; Duncan, M.J.; Myers, T. NICE’s recent guidelines on “the size of your waist” unfairly penalizes shorter people. Obes. Res. Clin. Pract. 2022, 16, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, S.; Buonocore, P.; Amoriello, T. New Validated Short Questionnaire for the Evaluation of the Adherence of Mediterranean Diet and Nutritional Sustainability in All Adult Population Groups. Nutrients 2022, 14, 5177. [Google Scholar] [CrossRef] [PubMed]
- Fiorini, G.; Cerri, C.; Bini, S.; Rigamonti, A.E.; Perlini, S.; Marazzi, N.; Sartorio, A.; Cella, S.G. The burden of chronic noncommunicable diseases in undocumented migrants: A 1-year survey of drugs dispensation by a non-governmental organization in Italy. Public Health 2016, 141, 26–31. [Google Scholar] [CrossRef]
- National Observatory on Health in the Regions. Available online: https://osservatoriosullasalute.it/rapporto-osservasalute (accessed on 16 October 2024).
- Sterne, J.A.C.; White, I.R.; Carlin, J.B.; Spratt, M.; Royston, P.; Kenward, M.G.; Wood, A.M.; Carpenter, J.R. Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls. BMJ 2009, 338, b2393. [Google Scholar] [CrossRef]
- Hanusek, K.; Karczmarski, J.; Litwiniuk, A.; Urbańska, K.; Ambrozkiewicz, F.; Kwiatkowski, A.; Martyńska, L.; Domańska, A.; Bik, W.; Paziewska, A. Obesity as a Risk Factor for Breast Cancer-The Role of miRNA. Int. J. Mol. Sci. 2022, 23, 15683. [Google Scholar] [CrossRef]
- Devericks, E.N.; Carson, M.S.; McCullough, L.E.; Coleman, M.F.; Hursting, S.D. The obesity-breast cancer link: A multidisciplinary perspective. Cancer Metastasis Rev. 2022, 41, 607–625. [Google Scholar] [CrossRef]
- Islam, M.R.; Arthur, S.; Haynes, J.; Butts, M.R.; Nepal, N.; Sundaram, U. The Role of Gut Microbiota and Metabolites in Obesity-Associated Chronic Gastrointestinal Disorders. Nutrients 2022, 14, 624. [Google Scholar] [CrossRef]
- Martínez-Montoro, J.I.; Morales, E.; Cornejo-Pareja, I.; Tinahones, F.J.; Fernández-García, J.C. Obesity-related glomerulopathy: Current approaches and future perspectives. Obes. Rev. 2022, 23, e13450. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Cortegana, C.; Hontecillas-Prieto, L.; García-Domínguez, D.J. Obesity and Risk for Lymphoma: Possible Role of Leptin. Int. J. Mol. Sci. 2022, 23, 15530. [Google Scholar] [CrossRef] [PubMed]
- Tillin, T.; Hughes, A.D.; Mayet, J.; Whincup, P.; Sattar, N.; Forouhi, N.G.; McKeigue, P.M.; Chaturvedi, N. The relationship between metabolic risk factors and incident cardiovascular disease in Europeans, South Asians, and African Caribbeans: SABRE (Southall and Brent Revisited)—A prospective population-based study. J. Am. Coll. Cardiol. 2013, 6, 1777–1786. [Google Scholar] [CrossRef] [PubMed]
- Vikram, N.K.; Pandey, R.M.; Misra, A.; Sharma, R.; Devi, J.R.; Khanna, N. Non-obese (body mass index < 25 kg/m2) Asian Indians with normal waist circumference have high cardiovascular risk. Nutrition 2003, 19, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Hales, C.M.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Prevalence of obesity among adults and youth: United States, 2015–2016. NCHS Data Brief 2017, 288, 1–8. [Google Scholar]
- Devia, C.; Flórez, K.R.; Costa, S.A.; Huang, T.T. Prevalence of self-reported obesity among diverse Latino adult populations in New York City, 2013-2017. Obes. Sci. Pract. 2021, 7, 379–391. [Google Scholar] [CrossRef]
- López-Cevallos, D.F.; Gonzalez, P.; Bethel, J.W.; Castañeda, S.F.; Isasi, C.R.; Penedo, F.J.; Ojeda, L.; Davis, S.M.; Chirinos, D.A.; Molina, K.M.; et al. Is there a link between wealth and cardiovascular disease risk factors among Hispanic/Latinos? Results from the HCHS/SOL sociocultural ancillary study. Ethn. Health 2018, 23, 902–913, Erratum in Ethn. Health 2018, 23, i. [Google Scholar] [CrossRef]
- Commodore-Mensah, Y.; Ukonu, N.; Obisesan, O.; Aboagye, J.K.; Agyemang, C.; Reilly, C.M.; Dunbar, S.B.; Okosun, I.S. Length of Residence in the United States is Associated With a Higher Prevalence of Cardiometabolic Risk Factors in Immigrants: A Contemporary Analysis of the National Health Interview Survey. J. Am. Heart Assoc. 2016, 5, e004059. [Google Scholar] [CrossRef]
- Osibogun, O.; Ogunmoroti, O.; Mathews, L.; Okunrintemi, V.; Tibuakuu, M.; Michos, E.D. Greater Acculturation is Associated With Poorer Cardiovascular Health in the Multi-Ethnic Study of Atherosclerosis. J. Am. Heart Assoc. 2021, 10, e019828. [Google Scholar] [CrossRef]
- Anikpo, I.; Dodds, L.; Mesa, R.A.; Tremblay, J.; Vilchez, L.; Elfassy, T. Length of Time in the United States and Cardiometabolic Outcomes Among Foreign and US-Born Black Adults. J. Racial Ethn. Health Disparities 2024. [Google Scholar] [CrossRef]
- Tirthani, E.; Said, M.S.; Rehman, A. Genetics and Obesity. 2023 Jul 31. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Cooper, A.J.; Gupta, S.R.; Moustafa, A.F.; Chao, A.M. Sex/Gender Differences in Obesity Prevalence, Comorbidities, and Treatment. Curr. Obes. Rep. 2021, 10, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Raftopoulou, A.; Gil Trasfi, J. Income-related inequality in obesity and its determinants in Spain: What happens beyond the obesity threshold? Int. J. Health Econ. Manag. 2024, 24, 135–153. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.Y.; Grossman, M.; Saffer, H. An economic analysis of adult obesity: Results from the Behavioral Risk Factor Surveillance System. J. Health Econ. 2004, 23, 565–587. [Google Scholar] [CrossRef] [PubMed]
- Esposito, L.; Villaseñor, A.; Rodríguez, E.C.; Millett, C. The economic gradient of obesity in Mexico: Independent predictive roles of absolute and relative wealth by gender. Soc. Sci. Med. 2020, 250, 112870. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Ikeue, K.; Kanasaki, M.; Yamakage, H.; Satoh-Asahara, N.; Masuda, I.; Ishii, K. Age-wise examination of the association of obesity based on body mass index and waist circumference with metabolic diseases in comprehensive health checkup participants. Obes. Sci. Pract. 2024, 10, e746. [Google Scholar] [CrossRef]
- Tsetseri, M.N.; Keene, D.J.; Silman, A.J.; Dakin, S.G. Exploring the burden, prevalence and associated factors of chronic musculoskeletal pain in migrants from North Africa and Middle East living in Europe: A scoping review. BMC Public Health 2024, 24, 769. [Google Scholar] [CrossRef]
Total | North Africa | South Africa | Latin America | Asia | Eastern Europe | p-Value | |
---|---|---|---|---|---|---|---|
N, % | N, % | N, % | N, % | N, % | N, % | ||
N | 341 | 87 | 49 | 111 | 39 | 55 | |
Sex | |||||||
Male | 184, 54.0 | 75, 86.2 | 41, 83.7 | 20, 18.0 | 26, 66.7 | 22, 40.0 | <0.001 |
Female | 157, 46.0 | 12, 13.8 | 8, 16.3 | 91, 82.0 | 13, 33.3 | 33, 60.0 | |
Age (mean (SD)) | 41.30 (12.2) | 36.97 (12.2) | 38.53 (11.7) | 43.51 (11.7) | 41.39 (10.2) | 46.07 (12.3) | |
18–30 | 79, 23.2 | 35, 40.2 | 16, 32.7 | 16, 14.4 | 4, 10.3 | 8, 14.5 | <0.001 |
31–40 | 74, 21.7 | 15, 17.3 | 9, 18.3 | 28, 25.3 | 15, 38.4 | 7, 12.7 | |
41–50 | 93, 27.3 | 19, 21.8 | 16, 32.7 | 33, 29.7 | 11, 28.2 | 14, 25.5 | |
51+ | 95, 27.8 | 18, 20.7 | 8, 16.3 | 34, 30.6 | 9, 23.1 | 26, 47.3 | |
Years spent in Italy (mean (SD)) | 7.33 (8.9) | 9.30 (11.0) | 7.61 (8.6) | 3.80 (5.3) | 6.80 (8.6) | 11.4 (8.9) | |
Education | |||||||
Illiterate | 21, 6.2 | 4, 4.6 | 9, 18.4 | 0 | 1, 2.6 | 7, 12.7 | <0.001 |
Elementary school | 51, 14.9 | 8, 9.2 | 16, 32.6 | 12, 10.8 | 7, 17.9 | 8, 14.6 | |
Middle school | 120, 35.2 | 37, 42.5 | 8, 16.3 | 43, 38.8 | 15, 38.5 | 17, 30.9 | |
High school | 102, 29.9 | 21, 24.2 | 7, 14.3 | 49, 44.1 | 8, 20.5 | 17, 30.9 | |
University | 46, 13.5 | 17, 19.5 | 9, 18.4 | 7, 6.3 | 8, 20.5 | 5, 9.1 | |
Missing | 1, 0.3 | 1, 1.8 | |||||
Employment | |||||||
Unemployed | 184, 54.0 | 50, 57.5 | 37, 75.5 | 45, 40.6 | 18, 46.2 | 34, 61.8 | <0.001 |
Precarious/occasional | 39, 11.4 | 7, 8.0 | 2, 4.1 | 20, 18.0 | 2, 5.1 | 8, 14.6 | |
Stable | 117, 34.3 | 30, 34.5 | 9, 18.4 | 46, 41.4 | 19, 48.7 | 13, 23.6 | |
Missing | 1, 0.3 | 1, 2.0 | |||||
Housing | |||||||
Stable housing | 283, 83.0 | 65, 74.7 | 27, 55.1 | 109, 98.2 | 35, 89.7 | 47, 85.4 | <0.001 |
Homeless | 58, 17.0 | 22, 26.3 | 22, 44.9 | 2, 1.8 | 4, 10.3 | 8, 14.6 | |
Cohabitants (mean (SD)) | 3.33 (1.7) | 3.50 (1.8) | 3.46 (2.1) | 3.20 (1.6) | 3.63 (1.6) | 3.06 (1.6) | <0.001 |
Missing | 57, 16.7 | 21, 24.1 | 21, 42.9 | 3, 2.7 | 4, 10.3 | 8, 14.5 | |
Adherence to Mediterranean diet | |||||||
Low | 197, 57.8 | 37, 42.5 | 29, 59.2 | 75, 67.6 | 16, 41.0 | 40, 72.7 | <0.001 |
Medium | 96, 28.1 | 31, 35.6 | 15, 30.6 | 30, 27.0 | 10, 25.7 | 10, 18.2 | |
High | 48, 14.1 | 19, 21.9 | 5, 10.2 | 6, 5.4 | 13, 33.3 | 5, 9.1 | |
Substance use | |||||||
No | 229, 67.2 | 47, 54.0 | 39, 79.6 | 87, 78.4 | 33, 84.6 | 23, 41.8 | |
Alcohol | 19, 5.6 | 1, 1.2 | 4, 8.2 | 13, 11.7 | 0 | 1, 1.8 | <0.001 |
Cigarettes | 76, 22.3 | 35, 40.2 | 6, 12.2 | 8, 7.2 | 6, 15.4 | 21, 38.2 | |
Cigarettes and alcohol | 17, 5.0 | 4, 4.6 | 0 | 3, 2.7 | 0 | 10, 18.2 | |
Diabetes | 35, 10.3 | 10, 11.5 | 3, 6.1 | 11, 9.9 | 6, 15.4 | 5, 9.1 | 0.688 |
CV diseases | 55, 16.1 | 13, 14.9 | 6, 12.2 | 19, 17.1 | 5, 12.8 | 12, 21.8 | 0.672 |
Total | N | Obese or Overweight BMI | PR (95% CI) | Obese or Overweight WC | PR (95% CI) |
---|---|---|---|---|---|
341 | 208 (61.0%) | 233 (68.3%) | |||
Geographic area | |||||
North Africa | 87 | 42 (48.3%) | 0.76 (0.59–0.98) | 52 (59.7%) | 0.94 (0.75–1.16) |
South Africa | 49 | 18 (36.7%) | 0.57 (0.37–0.86) | 18 (36.7%) | 0.62 (0.41–0.91) |
Latin America | 111 | 86 (77.5%) | Ref. | 98 (88.3%) | Ref. |
Asia | 39 | 30 (76.9%) | 0.98 (0.78–1.23) | 27 (69.2%) | 0.93 (0.73–1.16) |
Eastern Europe | 55 | 32 (58.2%) | 0.79 (0.62–1.02) | 38 (69.1%) | 0.92 (0.74–1.14) |
Sex | |||||
Male | 184 | 101 (54.9%) | Ref. | 100 (54.4%) | Ref. |
Female | 157 | 107 (68.2%) | 0.95 (0.80–1.14) | 133 (84.7%) | 1.35 (1.14–1.62) |
Age | |||||
18–30 | 79 | 25 (31.7%) | Ref. | 43 (54.4%) | Ref. |
31–40 | 74 | 45 (60.8%) | 1.66 (1.15–2.38) | 48 (64.9%) | 1.10 (0.86–1.40) |
41–50 | 93 | 69 (74.2%) | 2.09 (1.50–2.93) | 69 (74.2%) | 1.38 (1.10–1.73) |
51+ | 95 | 66 (72.6%) | 1.95 (1.37–2.75) | 73 (76.8%) | 1.37 (1.09–1.72) |
Years spent in Italy | |||||
≤1 | 126 | 75 (59.5) | Ref. | 96 (76.2) | Ref. |
>1 | 215 | 133 (61.9) | 0.90 (0.76–1.07) | 137 (63.7) | 0.76 (0.66–0.89) |
Education * | |||||
Illiterate | 22 | 14 (63.4) | 1.22 (0.85–1.75) | 15 (68.2) | 1.13 (0.86–1.49) |
Elementary school | 51 | 28 (54.9) | 0.92 (0.71–1.19) | 30 (58.8) | 0.88 (0.71–1.10) |
Middle school | 120 | 75 (62.5) | Ref. | 83 (69.2) | Ref. |
High school/university | 148 | 91 (61.5) | 1.00 (0.85–1.19) | 105 (71.0) | 1.00 (0.87–1.17) |
Employment * | |||||
Unemployed/precarious/occasional | 223 | 125 (56.1) | Ref. | 140 (62.8) | Ref. |
Stable | 117 | 83 (70.9) | 1.11 (0.95–1.31) | 93 (79.5) | 1.18 (1.04–1.35) |
Housing | |||||
Homeless | 58 | 22 (37.9) | Ref. | 26 (44.8) | Ref. |
Stable housing | 283 | 186 (65.7) | 1.28 (0.95–1.73) | 207 (73.1) | 1.10 (0.83–1.47) |
Adherence to Mediterranean diet | |||||
Low/medium | 199 | 177 (60.4) | Ref. | 199 (67.9) | Ref. |
High | 34 | 31 (64.6) | 1.06 (0.84–1.34) | 34 (70.8) | 1.11 (0.90–1.37) |
Substance use | |||||
No | 229 | 149 (65.1) | Ref. | 162 (70.7) | Ref. |
Alcohol and/or cigarettes | 112 | 59 (52.7) | 0.91 (0.76–1.10) | 71 (63.4) | 1.03 (0.87–1.20) |
Diabetes | |||||
No | 306 | 179 (58.5) | Ref. | 205 (67.0) | Ref. |
Yes | 35 | 29 (82.9) | 1.06 (0.85–1.30) | 28 (80.0) | 1.03 (0.84–1.25) |
Hypertension | |||||
No | 286 | 161 (56.3) | Ref. | 187 (65.4) | Ref. |
Yes | 55 | 47 (85.5) | 1.31 (1.09–1.59) | 46 (83.6) | 1.23 (1.03–1.47) |
Obese or Overweight * (n = 208) | Not Obese or Overweight * (n = 133) | ||
---|---|---|---|
ATC Class of Drugs | N, % | N, % | p-Value α |
Alimentary tract and metabolism | 84, 40.4% | 34, 25.6% | 0.0050 |
Blood and blood-forming organs | 22, 10.6% | 14, 10.5% | 0.9882 |
Cardiovascular system | 47, 22.6% | 8, 6.0% | <0.0001 |
Dermatological drugs | 22, 10.6% | 11, 8.3% | 0.4823 |
Genitourinary system and reproductive hormones | 9, 4.3% | 10, 7.5% | 0.2101 |
Systemic hormonal preparations, excluding reproductive hormones and insulins | 20, 9.6% | 7, 5.3% | 0.1466 |
Anti-infectives for systemic use | 40, 19.2% | 26, 19.6% | 0.9422 |
Antineoplastic and immunomodulating agents | 1, 0.5% | 1, 0.8% | 1.0000 |
Musculoskeletal system | 79, 38.0% | 41, 30.8% | 0.1773 |
Nervous system | 58, 28.0% | 27, 20.3% | 0.1143 |
Antiparasitic products, insecticides, and repellents | 3, 1.4% | 0 | 0.2842 |
Respiratory system | 38, 18.3% | 18, 13.5% | 0.2496 |
Sensory organs | 21, 10.1% | 9, 6.8% | 0.2898 |
Various ATC structures | 1, 0.5% | 1, 0.8% | 1.0000 |
Vitamin C | 1, 0.5% | 0 | 1.0000 |
Does not take any medication | 35, 16.8% | 32, 24.1% | 0.1011 |
Missing data | 16, 7.7% | 6, 4.5% | 0.2435 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franchi, M.; Fiorini, G.; Conflitti, C.; Schibuola, F.R.; Rigamonti, A.E.; Sartorio, A.; Corrao, G.; Cella, S.G. The Frequency and Main Characteristics of Obesity in Undocumented Migrants Receiving Medical Assistance from a Charitable Organisation in Italy. Healthcare 2024, 12, 2326. https://doi.org/10.3390/healthcare12232326
Franchi M, Fiorini G, Conflitti C, Schibuola FR, Rigamonti AE, Sartorio A, Corrao G, Cella SG. The Frequency and Main Characteristics of Obesity in Undocumented Migrants Receiving Medical Assistance from a Charitable Organisation in Italy. Healthcare. 2024; 12(23):2326. https://doi.org/10.3390/healthcare12232326
Chicago/Turabian StyleFranchi, Matteo, Gianfrancesco Fiorini, Claudia Conflitti, Fabio Riccardo Schibuola, Antonello Emilio Rigamonti, Alessandro Sartorio, Giovanni Corrao, and Silvano Gabriele Cella. 2024. "The Frequency and Main Characteristics of Obesity in Undocumented Migrants Receiving Medical Assistance from a Charitable Organisation in Italy" Healthcare 12, no. 23: 2326. https://doi.org/10.3390/healthcare12232326
APA StyleFranchi, M., Fiorini, G., Conflitti, C., Schibuola, F. R., Rigamonti, A. E., Sartorio, A., Corrao, G., & Cella, S. G. (2024). The Frequency and Main Characteristics of Obesity in Undocumented Migrants Receiving Medical Assistance from a Charitable Organisation in Italy. Healthcare, 12(23), 2326. https://doi.org/10.3390/healthcare12232326