Prevalence and Risk Factors of Menstrual Disorders in Korean Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Preparation
2.2. Definition and Classification of Variables
2.3. Statistical Analysis
3. Results
3.1. Prevalence of Menstrual Disorders by Risk Factors
3.2. Risk Factors for Menstrual Disorders
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fauser, B.C.J.M.; Adamson, G.D.; Boivin, J.; Chambers, G.M.; de Geyter, C.; Dyer, S.; Inhorn, M.C.; Schmidt, L.; Serour, G.I.; Tarlatzis, B.; et al. Declining global fertility rates and the implications for family planning and family building: An IFFS consensus document based on a narrative review of the literature. Hum. Reprod. Update 2024, 30, 153–173. [Google Scholar] [CrossRef] [PubMed]
- Solomon, C.G.; HU, F.B.; Dunaif, A.; Rich-Edwards, J.E.; Stampfer, M.J.; Willett, W.C.; Speizer, F.E.; Manson, J.E. Menstrual cycle irregularity and risk for future cardiovascular disease. J. Clin. Endocrinol. Metab. 2002, 87, 2013–2017. [Google Scholar] [CrossRef] [PubMed]
- Kakuno, Y.; Amino, N.; Kanoh, M.; Kawai, M.; Fujiwara, M.; Kimura, M.; Kamitani, A.; Saya, K.; Shakuta, R.; Nitta, S.; et al. Menstrual disturbances in various thyroid diseases. Endocr. J. 2010, 57, 1017–1022. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-X.; Arvizu, M.; Rich-Edwards, J.W.; Stuart, J.J.; Manson, J.E.; Missmer, S.A.; Pan, A.; Chavarro, J.E. Menstrual cycle regularity and length across the reproductive lifespan and risk of premature mortality: Prospective cohort study. BMJ 2020, 371, m3464. [Google Scholar] [CrossRef]
- Cho, I.Y.; Chang, Y.; Kang, J.-H.; Kim, Y.; Sung, E.; Shin, H.; Wild, S.H.; Byrne, C.D.; Ryu, S. Long or irregular menstrual cycles and risk of prevalent and incident nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 2022, 107, e2309–e2317. [Google Scholar] [CrossRef] [PubMed]
- Onarheim, K.H.; Iversen, J.H.; Bloom, D.E. Economic benefits of investing in women’s health: A systemic review. PLoS ONE 2016, 11, e0150120. [Google Scholar] [CrossRef]
- Park, Y.J.; Shin, H.J.; Jeon, S.I.; Cho, I.H.; Kim, Y.J. Menstrual cycle patterns and the prevalence of premenstrual syndrome and polycystic ovary syndrome in Korean young adult women. Healthcare 2021, 9, 56. [Google Scholar] [CrossRef]
- Semiz, G.G.; Hekimsoy, Z. Menstrual cycle characteristics in women with and without thyroid disease. Cureus 2024, 16, e62724. [Google Scholar]
- Park, S.M.; Yoon, T.W.; Kang, D.R.; Chung, C.W. Prevalence of menstrual disorders according to body mass index and lifestyle factors: The National Health Insurance Service-National Health Screening Cohort in Korea, 2009~2016. J. Korean Acad. Nurs. 2020, 50, 401–410. [Google Scholar] [CrossRef]
- Song, E.S.; Park, E.J.; Choe, S.A.; Park, J.H.; Song, B.M.; Han, J.H.; Park, H.Y. How do Korean Women Manage Menstrual or Menopausal Symptoms: 2022 Women’s Health Survey for Sexual and Reproductive Health. Public Health Wkly. Rep. 2023, 16, 783–800. [Google Scholar]
- Lee, J.C.; Yu, B.K.; Byeon, J.H.; Lee, K.H.; Min, J.H.; Park, S.H. A study on the menstruation of Korean adolescent girls in Seoul. Korean J. Pediatr. 2011, 54, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Nam, G.E.; Han, K.; Lee, G. Association between sleep duration and menstrual cycle irregularity in Korean female adolescents. Sleep Med. 2017, 35, 62–66. [Google Scholar] [CrossRef]
- Lee, E.J. A grounded theory analysis on unmarried women’s experiences and perceptions of visit to the hospital specialized in obstetrics and gynecology. Korea Sci. Art Forum 2015, 20, 349–364. [Google Scholar] [CrossRef]
- Jung, E.K.; Kim, S.W.; Ock, S.M.; Jung, K.I.; Song, C.H. Prevalence and related factors of irregular menstrual cycles in Korean women: The 5th Korean National Health and Nutrition Examination Survey (KNHANES-V, 2010–2012). J. Psychosom. Obstet. Gynaecol. 2018, 39, 196–202. [Google Scholar] [CrossRef]
- Bae, J.J.; Park, S.S.; Kwon, J.W. Factors associated with menstrual cycle irregularity and menopause. BMC Women’s Health 2018, 18, 36. [Google Scholar] [CrossRef]
- Ko, K.M.; Han, K.D.; Chung, Y.J.; Yoon, K.H.; Park, Y.G.; Lee, S.H. Association between body weight changes and menstrual irregularity: The Korea national health and nutrition examination survey 2010 to 2012. Endocrinol. Metab. 2017, 32, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Nam, G.E.; Han, B.; Cho, S.J.; Kim, J.; Eum, D.H.; Lee, S.W.; Min, S.H.; Lee, W.; Han, K.; et al. Associations of mental health and sleep duration with menstrual cycle irregularity: A population-based study. Arch. Women’s Ment. Health 2018, 21, 619–626. [Google Scholar] [CrossRef]
- Windham, G.C.; Elkin, E.P.; Swan, S.H.; Waller, K.O.; Fenster, L. Cigarette smoking and effects on menstrual function. Obstet. Gynecol. 1999, 93, 59–65. [Google Scholar]
- Nohara, M.; Momoeda, M.; Kubota, T.; Nakabayashi, M. Menstrual cycle and menstrual pain problems and related risk factors among Japanese female workers. Ind. Health 2011, 49, 228–234. [Google Scholar] [CrossRef]
- Nagma, S.; Kapoor, G.; Bharti, R.; Batra, A.; Batra, A.; Aggarwal, A.; Sablok, A. To evaluate the effect of perceived stress on menstrual function. J. Clin. Diagn. Res. 2015, 9, QC01–QC03. [Google Scholar] [CrossRef]
- Nillni, Y.I.; Wesselink, A.K.; Hatch, E.E.; Mikkelsen, E.M.; Gradus, J.L.; Rothman, K.J.; Wise, L.A. Mental health, psychotropic medication use, and menstrual cycle characteristics. Clin. Epidemiol. 2018, 10, 1073–1082. [Google Scholar] [CrossRef]
- Na Jung, A.; Park, J.H.; Kim, J.; Kim, S.H.; Jee, B.C.; Cha, B.H.; Sull, J.W.; Jun, J.H. Detrimental effects of higher body mass index and smoking habits on menstrual cycles in Korean women. J. Women’s Health 2017, 26, 83–90. [Google Scholar] [CrossRef]
- Hahn, K.A.; Wise, L.A.; Riis, A.H.; Mikkelsen, E.M.; Rothman, K.J.; Banholzer, K.; Hatch, E.E. Correlates of menstrual cycle characteristics among nulliparous Danish women. Clin. Epidemiol. 2013, 5, 311–319. [Google Scholar] [CrossRef]
- Rowland, A.S.; Baird, D.D.; Long, S.; Wegienka, G.; Harlow, S.D.; Alavanja, M.; Sandler, D.P. Influence of medical conditions and lifestyle factors on the menstrual cycle. Epidemiology 2002, 13, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Choi, H.; Pang, Y.; Kim, O.; Park, H.Y. Factors associated with regularity and length of menstrual cycle: Korea Nurses’ Health Study. BMC Women’s Health 2022, 22, 361. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gold, E.B.; Lasley, B.L.; Johnson, W.O. Factors affecting menstrual cycle characteristics. Am. J. Epidemiol. 2004, 160, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Cooper, G.S.; Sandler, D.P.; Whelan, E.A.; Smith, K.R. Association of physical and behavioral characteristics with menstrual cycle patterns in women age 29–31 years. Epidemiology 1996, 7, 624–628. [Google Scholar] [CrossRef]
- Schliep, K.C.; Zarek, S.M.; Schisterman, E.F.; Wactawski-Wende, J.; Trevisan, M.; Sjaarda, L.A.; Perkins, N.J.; Mumford, S.L. Alcohol intake, reproductive hormones, and menstrual cycle function: A prospective cohort study. Am. J. Clin. Nutr. 2015, 102, 933–942. [Google Scholar] [CrossRef]
- Chang, P.J.; Chen, P.C.; Hsieh, C.J.; Chiu, L.T. Risk factors on the menstrual cycle of healthy Taiwanese college nursing students. Aust. N. Z. J. Obstet. Gynaecol. 2009, 49, 689–694. [Google Scholar] [CrossRef]
- Baker, F.C.; Driver, H.S. Circadian rhythms, sleep, and the menstrual cycle. Sleep Med. 2007, 8, 613–622. [Google Scholar] [CrossRef]
- Stocker, L.J.; Macklon, N.S.; Bewley, S.; Cheong, Y.C. The influence of shift work on early reproductive outcomes: A meta-analysis. Obstet. Gynecol. 2014, 124, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S. Occupational exposure associated with reproductive dysfunction. J. Occup. Health 2004, 46, 1–19. [Google Scholar] [CrossRef]
- Cho, S.-I.; Damokosh, A.I.; Ryan, L.M.; Chen, D.; Hu, Y.A.; Smith, T.J.; Christiani, D.C.; Xu, X. Effects of exposure to organic solvents on menstrual cycle length. J. Occup. Environ. Med. 2001, 43, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Hassani, S.; Namvar, M.; Ghoreishvandi, M.; Attarchi, M.; Golabadi, M.; Seyedmehdi, S.M.; Khodarahmian, M. Menstrual disturbances and hormonal changes in women workers exposed to a mixture of organic solvents in a pharmaceutical company. Med. J. Islam. Repub. Iran 2014, 28, 156. [Google Scholar]
- Attarchi, M.S.; Ashouri, M.; Labbafinejad, Y.; Mohammadi, S. Assessment of time to pregnancy and spontaneous abortion status following occupational exposure to organic solvent mixture. Int. Arch. Occup. Environ. Health 2012, 85, 295–303. [Google Scholar] [CrossRef]
- Figa-Talamanca, I. Occupational risk factors and reproductive health of women. Occup. Med. 2006, 56, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Park, S.J.; Choi, H.R.; Choi, J.H.; Kim, K.; Hong, J.P. Reliability and validity of the Korean version of the patient health questionnaire-9 (PHQ-9). Anxiety Mood 2010, 6, 119–124. [Google Scholar]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A global measure of perceived stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef]
- Lee, J.; Shin, C.; Ko, Y.H.; Lim, J.; Joe, S.H.; Kim, S.; Jung, I.K.; Han, C. The reliability and validity studies of the Korean version of the perceived stress scale. Korean J. Psychosom. Med. 2012, 20, 127–134. [Google Scholar]
- Korea National Health and Nutrition Examination Survey, Korea Disease Control and Prevention Agency (KDCA). Available online: https://knhanes.kdca.go.kr/knhanes/rawDataDwnld/rawDataDwnld.do (accessed on 17 July 2023).
- Lawson, C.C.; Johnson, C.Y.; Chavarro, J.E.; Hibert, E.N.L.; Whelan, E.A.; Rocheleau, C.M.; Grajewski, B.; Schernhammer, E.S.; Rich-Edwards, J.W. Work schedule and physically demanding work in relation to menstrual function: The Nurses’ Health Study 3. Scand. J. Work Environ. Health 2015, 41, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Kulshrestha, S.; Durrani, A.M. Prevalence of menstrual disorders and their association with physical activity in adolescent girls of Aligarh city. Int. J. Health Sci. Res. 2019, 9, 384–393. [Google Scholar]
- Waghmare, B.V.; Jajoo, S. Navigating the challenges: A comprehensive review of adolescent gynecological problems. Cureus 2024, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Marques, P.; Madeira, T.; Gama, A. Menstrual cycle among adolescents: Girl’s awareness and influence of age at menarche and overweight. Rev. Paul. Pediatr. 2022, 40, e2020494. [Google Scholar] [CrossRef]
- Tscherne, G. Pediatr Adolesc Gynecol; Karger: Basel, Switzerland, 2004; Volume 7, pp. 129–139. [Google Scholar]
- Irregular Periods. 2024. Available online: https://kidshealth.org/en/teens/irregular-periods.html (accessed on 13 January 2024).
- Wei, S.; Schmidt, M.D.; Dwyer, T.; Norman, R.J.; Venn, A.J. Obesity and menstrual irregularity: Associations with SHBG, testosterone, and insulin. Obesity 2009, 17, 1070–1076. [Google Scholar] [CrossRef] [PubMed]
- Klenov, V.E.; Jungheim, E.S. Obesity and reproductive function: A review of the evidence. Curr. Opin. Obstet. Gynecol. 2014, 26, 455–460. [Google Scholar] [CrossRef]
- Windham, G.C.; Mitchell, P.; Anderson, M.; Lasley, B.L. Cigarette smoking and effects on hormone function in premenopausal women. Environ. Health Perspect. 2005, 113, 1285–1290. [Google Scholar] [CrossRef]
- Alshayeb, S.; Sakka, K. The prevalence of various menstrual disorders and its association with psychological stress in medical faculties students. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Padda, J.; Khalid, K.; Hitawala, G.; Batra, N.; Pokhriyal, S.; Mohan, A.; Zubair, U.; Cooper, A.C.; Jean-Charles, G. Depression and its effect on the menstrual cycle. Cureus 2021, 13, e16532. [Google Scholar] [CrossRef]
- Keller, J.; Gomez, R.; Williams, G.; Lembke, A.; Lazzeroni, L.; Murphy, G.M., Jr.; Schatzberg, A.F. HPA axis in major depression: Cortisol, clinical symptomatology and genetic variation predict cognition. Mol. Psychiatry 2017, 22, 527–536. [Google Scholar] [CrossRef]
- Varghese, F.P.; Brown, S. The hypothalamic-pituitary-adrenal axis in major depressive disorder: A brief primer for primary care physicians. Prim. Care Companion J. Clin. Psychiatry 2001, 3, 151. [Google Scholar] [CrossRef] [PubMed]
- Joseph, D.N.; Whirledge, S. Stress and the HPA axis: Balancing homeostasis and fertility. Int. J. Mol. Sci. 2017, 18, 2224. [Google Scholar] [CrossRef] [PubMed]
- Ranga Priya, M.; Gunasundari, T.; Manivannan, R. Influence of lifestyle factors on menstrual disorders. J. Innov. Pharm. Biol. Sci. 2024, 11, 21–29. [Google Scholar]
Variables | Number | Percentage (%) |
---|---|---|
Age (years) | ||
15–19 | 1917 | 13.7 |
20–29 | 4351 | 31.2 |
30–39 | 4937 | 35.4 |
40–45 | 2738 | 19.6 |
BMI (kg/m2) | ||
<18.5 (Underweight) | 2172 | 15.6 |
18.5–24.9 (Normal weight) | 9747 | 70.1 |
25.0–29.9 (Overweight) | 1548 | 11.1 |
≥30.0 (Obesity) | 439 | 3.2 |
Smoking Status | ||
Non-smoker | 12,211 | 87.6 |
Former smoker | 674 | 4.8 |
Current smoker | 1058 | 7.6 |
Alcohol Consumption Status | ||
Non-drinker | 6992 | 50.1 |
Former drinker | 1861 | 13.3 |
Current drinker | 5090 | 36.5 |
Education | ||
Under high school graduation | 3648 | 26.2 |
Attending university or graduation | 9504 | 68.2 |
Over graduate school | 791 | 5.7 |
Income (Korean Won) | ||
<2,000,000 | 2490 | 17.9 |
2,000,000–4,000,000 | 4857 | 34.8 |
≥4,000,000 | 4722 | 33.9 |
Unsure | 1874 | 13.4 |
Depression | ||
Minimal (0–4) | 6286 | 45.1 |
Mild (5–9) | 4543 | 32.6 |
Moderate (10–19) | 2707 | 19.4 |
Severe (20–27) | 407 | 2.9 |
Stress | ||
Low (0–13) | 2422 | 17.4 |
Moderate (14–26) | 10,336 | 74.1 |
High (27–40) | 1185 | 8.5 |
Variables | Number | Percentage (%) |
---|---|---|
Menarche age (years) | ||
≤8 | 11 | 0.1 |
9–11 | 2753 | 19.8 |
12–13 | 6882 | 49.5 |
14–17 | 4104 | 29.5 |
≥18 | 140 | 1.0 |
Mean ± S.D. | 12.9 ± 2.2 | |
Menstrual cycle length (days) | ||
<21 | 436 | 3.1 |
21–25 | 1179 | 8.5 |
26–31 | 9394 | 67.4 |
32–35 | 1682 | 12.0 |
≥36 | 1252 | 9.0 |
Mean ± S.D. | 29.5 ± 4.9 | |
Menstrual duration (days) | ||
<5 | 2128 | 15.3 |
5–7 | 11,063 | 79.3 |
≥8 | 749 | 5.4 |
Unit: N (%) | |||
---|---|---|---|
Variables | Polymenorrhea | Oligomenorrhea | Menorrhagia |
Age (years) | |||
15–19 | 108 (5.6) | 259 (13.5) | 195 (10.2) |
20–29 | 137 (3.1) | 536 (12.3) | 215 (4.9) |
30–39 | 114 (2.3) | 342 (6.9) | 221 (4.5) |
40–45 | 77 (2.8) | 115 (4.2) | 118 (4.3) |
p-value | <0.001 | <0.001 | <0.001 |
BMI (kg/m2) | |||
<18.5 (Underweight) | 85 (3.9) | 166 (7.6) | 507 (6.0) |
18.5–24.9 (Normal weight) | 270 (2.8) | 832 (8.5) | 131 (5.2) |
25.0–29.9 (Overweight) | 58 (3.7) | 173 (11.2) | 79 (5.1) |
≥30.0 (Obesity) | 19 (4.3) | 77 (17.5) | 28 (6.4) |
p-value | 0.005 | <0.001 | 0.320 |
Smoking Status | |||
Non-smoker | 370 (3.0) | 1080 (8.8) | 640 (5.2) |
Former smoker | 13 (1.9) | 59 (8.8) | 36 (5.3) |
Current smoker | 53 (5.0) | 113 (10.7) | 73 (6.9) |
p-value | <0.001 | 0.131 | 0.070 |
Alcohol Consumption Status | |||
Non-drinker | 276 (3.9) | 610 (8.7) | 459 (6.6) |
Former drinker | 61 (3.3) | 167 (9.0) | 92 (4.9) |
Current drinker | 99 (1.9) | 475 (9.3) | 198 (3.9) |
p-value | <0.001 | 0.514 | <0.001 |
Education | |||
Under high school graduation | 211 (5.8) | 383 (10.5) | 293 (8.0) |
Attending university or graduation | 209 (2.2) | 820 (8.6) | 422 (4.4) |
Over graduate school | 16 (2.0) | 49 (6.2) | 34 (4.3) |
p-value | <0.001 | <0.001 | <0.001 |
Income (Korean Won) | |||
<2,000,000 | 143 (5.7) | 241 (9.7) | 188 (7.6) |
2,000,000–4,000,000 | 116 (2.4) | 410 (8.4) | 230 (4.7) |
≥4,000,000 | 79 (1.7) | 366 (7.8) | 194 (4.1) |
Unsure | 98 (5.2) | 235 (12.5) | 137 (7.3) |
p-value | <0.001 | <0.001 | <0.001 |
Depression | |||
Normal group (0–9) | 307 (2.8) | 869 (8.0) | 510 (4.7) |
High-risk group (10–27) | 129 (4.1) | 383 (12.3) | 239 (7.7) |
p-value | <0.001 | <0.001 | <0.001 |
Stress | |||
Normal group (0–13) | 76 (3.1) | 169 (7.0) | 109 (4.5) |
High-risk group (14–40) | 360 (3.1) | 1083 (9.4) | 640 (5.6) |
p-value | 0.973 | <0.001 | 0.036 |
Variables | Crude | Adjusted | ||
---|---|---|---|---|
OR | 95% CI | OR | 95% CI | |
Age (years) | ||||
15–19 | 1.000 | 1.000 | ||
20–29 | 0.545 | 0.421–0.705 | 1.037 | 0.755–1.425 |
30–39 | 0.396 | 0.303–0.518 | 0.958 | 0.684–1.343 |
40–45 | 0.485 | 0.360–0.653 | 1.191 | 0.833–1.701 |
BMI (kg/m2) | ||||
<18.5 (Underweight) | 1.430 | 1.115–1.833 | 1.291 | 1.003–1.661 |
18.5–24.9 (Normal weight) | 1.000 | 1.000 | ||
25.0–29.9 (Overweight) | 1.366 | 1.024–1.824 | 1.175 | 0.876–1.576 |
≥30.0 (Obesity) | 1.588 | 0.987–2.554 | 1.075 | 0.661–1.749 |
Smoking Status | ||||
Non-smoker | 1.000 | 1.000 | ||
Former smoker | 0.629 | 0.360–1.100 | 0.670 | 0.379–1.185 |
Current smoker | 1.688 | 1.257–2.267 | 1.516 | 1.099–2.091 |
Alcohol Consumption Status | ||||
Non-drinker | 1.000 | 1.000 | ||
Former drinker | 0.825 | 0.622–1.093 | 0.944 | 0.702–1.269 |
Current drinker | 0.483 | 0.383–0.609 | 0.569 | 0.442–0.733 |
Education | ||||
Under high school graduation | 1.000 | 1.000 | ||
Attending university or graduation | 0.366 | 0.301–0.445 | 0.516 | 0.407–0.655 |
Over graduate school | 0.336 | 0.201–0.562 | 0.555 | 0.322–0.954 |
Income (Korean Won) | ||||
<2,000,000 | 1.000 | 1.000 | ||
2,000,000–4,000,000 | 0.402 | 0.313–0.516 | 0.468 | 0.361–0.607 |
≥4,000,000 | 0.279 | 0.211–0.369 | 0.356 | 0.265–0.479 |
Unsure | 0.906 | 0.695–1.180 | 0.761 | 0.571–1.015 |
Depression | ||||
Normal group (0–9) | 1.000 | 1.000 | ||
High-risk group (10–27) | 1.481 | 1.201–1.827 | 1.247 | 0.994–1.563 |
Stress | ||||
Normal group (0–13) | 1.000 | 1.000 | ||
High-risk group (14–40) | 0.996 | 0.774–1.280 | 0.916 | 0.702–1.196 |
Variables | Crude | Adjusted | ||
---|---|---|---|---|
OR | 95% CI | OR | 95% CI | |
Age (years) | ||||
15–19 | 1.000 | 1.000 | ||
20–29 | 0.899 | 0.767–1.055 | 0.825 | 0.673–1.010 |
30–39 | 0.476 | 0.402–0.565 | 0.436 | 0.350–0.543 |
40–45 | 0.281 | 0.223–0.353 | 0.261 | 0.201–0.340 |
BMI (kg/m2) | ||||
<18.5 (Underweight) | 0.887 | 0.745–1.055 | 0.801 | 0.672–0.955 |
18.5–24.9 (Normal weight) | 1.000 | 1.000 | ||
25.0–29.9 (Overweight) | 1.348 | 1.134–1.603 | 1.354 | 1.134–1.615 |
≥30.0 (Obesity) | 2.279 | 1.764–2.944 | 2.164 | 1.662–2.818 |
Smoking Status | ||||
Non-smoker | 1.000 | 1.000 | ||
Former smoker | 0.989 | 0.752–1.301 | 0.952 | 0.717–1.264 |
Current smoker | 1.232 | 1.004–1.513 | 1.008 | 0.810–1.254 |
Alcohol Consumption Status | ||||
Non-drinker | 1.000 | 1.000 | ||
Former drinker | 1.031 | 0.862–1.234 | 1.066 | 0.883–1.286 |
Current drinker | 1.077 | 0.950–1.221 | 1.170 | 1.020–1.343 |
Education | ||||
Under high school graduation | 1.000 | 1.000 | ||
Attending university or graduation | 0.805 | 0.708–0.915 | 1.071 | 0.910–1.261 |
Over graduate school | 0.563 | 0.414–0.766 | 0.940 | 0.674–1.310 |
Income (Korean Won) | ||||
<2,000,000 | 1.000 | 1.000 | ||
2,000,000–4,000,000 | 0.860 | 0.728–1.017 | 1.123 | 0.944–1.335 |
≥4,000,000 | 0.784 | 0.661–0.930 | 1.161 | 0.969–1.392 |
Unsure | 1.338 | 1.106–1.619 | 1.190 | 0.973–1.456 |
Depression | ||||
Normal group (0–13) | 1.000 | 1.000 | ||
High-risk group (14–27) | 1.607 | 1.415–1.826 | 1.416 | 1.236–1.621 |
Stress | ||||
Normal group (0–13) | 1.000 | 1.000 | ||
High-risk group (14–40) | 1.383 | 1.169–1.637 | 1.248 | 1.047–1.487 |
Variables | Crude | Adjusted | ||
---|---|---|---|---|
OR | 95% CI | OR | 95% CI | |
Age (years) | ||||
15–19 | 1.000 | 1.000 | ||
20–29 | 0.459 | 0.375–0.562 | 0.565 | 0.439–0.728 |
30–39 | 0.414 | 0.339–0.506 | 0.557 | 0.430–0.723 |
40–45 | 0.398 | 0.314–0.504 | 0.551 | 0.414–0.732 |
BMI (kg/m2) | ||||
<18.5 (Underweight) | 1.170 | 0.960–1.426 | 1.066 | 0.872–1.302 |
18.5–24.9 (Normal weight) | 1.000 | 1.000 | ||
25.0–29.9 (Overweight) | 0.980 | 0.768–1.250 | 0.905 | 0.707–1.157 |
≥30.0 (Obesity) | 1.241 | 0.838–1.839 | 0.994 | 0.666–1.483 |
Smoking Status | ||||
Non-smoker | 1.000 | 1.000 | ||
Former smoker | 1.020 | 0.722–1.441 | 1.172 | 0.822–1.672 |
Current smoker | 1.341 | 1.044–1.723 | 1.380 | 1.056–1.804 |
Alcohol Consumption Status | ||||
Non-drinker | 1.000 | 1.000 | ||
Former drinker | 0.741 | 0.588–0.932 | 0.792 | 0.624–1.005 |
Current drinker | 0.576 | 0.486–0.683 | 0.637 | 0.529–0.767 |
Education | ||||
Under high school graduation | 1.000 | 1.000 | ||
Attending university or graduation | 0.532 | 0.456–0.621 | 0.842 | 0.692–1.024 |
Over graduate school | 0.514 | 0.357–0.740 | 0.874 | 0.588–1.300 |
Income (Korean Won) | ||||
<2,000,000 | 1.000 | 1.000 | ||
2,000,000–4,000,000 | 0.609 | 0.499–0.743 | 0.699 | 0.569–0.859 |
≥4,000,000 | 0.525 | 0.427–0.645 | 0.648 | 0.520–0.807 |
Unsure | 0.966 | 0.768–1.214 | 0.718 | 0.562–0.918 |
Depression | ||||
Normal group (0–9) | 1.000 | 1.000 | ||
High-risk group (10–27) | 1.683 | 1.435–1.973 | 1.521 | 1.284–1.802 |
Stress | ||||
Normal group (0–13) | 1.000 | 1.000 | ||
High-risk group (14–40) | 1.248 | 1.014–1.537 | 1.124 | 0.905–1.397 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-L.; Chang, J.Y.; Kim, S.; Yoon, M.; Ha, J.-N.; Um, K.H.; Lee, B.; Jeong, K.S. Prevalence and Risk Factors of Menstrual Disorders in Korean Women. Healthcare 2025, 13, 606. https://doi.org/10.3390/healthcare13060606
Kim Y-L, Chang JY, Kim S, Yoon M, Ha J-N, Um KH, Lee B, Jeong KS. Prevalence and Risk Factors of Menstrual Disorders in Korean Women. Healthcare. 2025; 13(6):606. https://doi.org/10.3390/healthcare13060606
Chicago/Turabian StyleKim, Ye-Lin, Jun Young Chang, Suejin Kim, Mira Yoon, Jae-Na Ha, Kang Hyun Um, Boeun Lee, and Kyoung Sook Jeong. 2025. "Prevalence and Risk Factors of Menstrual Disorders in Korean Women" Healthcare 13, no. 6: 606. https://doi.org/10.3390/healthcare13060606
APA StyleKim, Y.-L., Chang, J. Y., Kim, S., Yoon, M., Ha, J.-N., Um, K. H., Lee, B., & Jeong, K. S. (2025). Prevalence and Risk Factors of Menstrual Disorders in Korean Women. Healthcare, 13(6), 606. https://doi.org/10.3390/healthcare13060606