Childhood Anemia in Mozambique: A Multilevel Mixed-Effects Analysis of 2011–2022/23 Population-Based Surveys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Selection of Study Participants
2.4. Variables of the Study
2.5. Outcome Variable
2.6. Exposure Variables
2.7. Statistical Analysis
2.8. Multilevel Mixed-Effects Analysis
3. Results
3.1. Study Population Characteristics
3.2. Determinants of Anemia Among Children
4. Discussion
4.1. Child’s Age and Childhood Anemia
4.2. Presence of Illness and Childhood Anemia
4.3. Vitamin A Supplementation and Childhood Anemia
4.4. Socioeconomic Status and Childhood Anemia
4.5. Gender of Household Head and Childhood Anemia
4.6. Water and Sanitation and Childhood Anemia
5. Conclusions
Recommendations and Future Approach
6. Strengths and Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leung, A.K.; Lam, J.M.; Wong, A.H.; Hon, K.L.; Li, X. Iron Deficiency Anemia: An Updated Review. Curr. Pediatr. Rev. 2024, 20, 339–356. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, P.G. Anemia in the pediatric patient. Blood 2022, 140, 571–593. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Anemia in Women and Children. In WHO Global Anaemia Estimates, 2021 Edition, ed; WHO: Geneva, Switzerland, 2021; Available online: https://www.who.int/data/gho/data/themes/topics/anaemia_in_women_and_children (accessed on 21 May 2024).
- Lozoff, B.; Beard, J.; Connor, J.; Barbara, F.; Georgieff, M.; Schallert, T. Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr. Rev. 2006, 64 Pt 2, S34–S91. [Google Scholar] [CrossRef]
- Gwetu, T.P.; Taylor, M.; Chhagan, M.; Kauchali, S.; Craib, M. Health and educational achievement of school-aged children: The impact of anemia and iron status on learning. Health SA Gesondheid 2019, 24, 1101. [Google Scholar] [CrossRef]
- Nuwabaine, L.; Kawuki, J.; Kamoga, L.; Sserwanja, Q.; Gatasi, G.; Donkor, E.; Mutisya, L.M.; Asiimwe, J.B. Factors associated with anemia among pregnant women in Rwanda: An analysis of the Rwanda demographic and health survey of 2020. BMC Pregnancy Childbirth 2024, 24, 328. [Google Scholar] [CrossRef]
- Daru, J. Sustainable Development Goals for anemia: 20 years later, where are we now? Lancet Glob. Health 2022, 10, e586–e587. [Google Scholar] [CrossRef]
- Weze, K.; Abioye, A.I.; Obiajunwa, C.; Omotayo, M. Spatio-temporal trends in anaemia among pregnant women, adolescents, and preschool children in sub-Saharan Africa. Public Health Nutr. 2021, 24, 3648–3661. [Google Scholar] [CrossRef]
- Tesema, G.A.; Worku, M.G.; Tessema, Z.T.; Teshale, A.B.; Alem, A.Z.; Yeshaw, Y.; Alamneh, T.S.; Liyew, A.M. Prevalence and determinants of severity levels of anemia among children aged 6–59 months in sub-Saharan Africa: A multilevel ordinal logistic regression analysis. PLoS ONE 2021, 16, e0249978. [Google Scholar] [CrossRef]
- Martinez-Torres, V.; Torres, N.; Davis, J.A.; Corrales-Medina, F.F. Anemia and Associated Risk Factors in Pediatric Patients. Pediatr. Health Med. Ther. 2023, 14, 267–280. [Google Scholar] [CrossRef]
- Chaparro, C.M.; Suchdev, P.S. Anemia epidemiology, pathophysiology, and etiology in low- and middle-income countries. Ann. N. Y. Acad. Sci. 2019, 1450, 15–31. [Google Scholar] [CrossRef]
- Van Nhien, N.; Khan, N.C.; Ninh, N.X.; Van Huan, P.; Hop, L.T.; Lam, N.T.; Ota, F.; Yabutani, T.; Hoa, V.Q.; Motonaka, J.; et al. Micronutrient deficiencies and anemia among preschool children in rural Vietnam. Asia Pac. J. Clin. Nutr. 2008, 17, 48–55. [Google Scholar] [PubMed]
- Ajit Chiplonkar, S.; Vilas Agte, V.; Shashikant Mengale, S. Relative importance of micronutrient deficiencies in iron deficiency anemia. Nutr. Res. 2003, 23, 1355–1367. [Google Scholar] [CrossRef]
- Shell-Duncan, B.; McDade, T. Cultural and environmental barriers to adequate iron intake among northern Kenyan schoolchildren. Food Nutr. Bull. 2005, 26, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Asmare, A.A.; Agmas, Y.A. Determinants of coexistence of undernutrition and anemia among under-five children in Rwanda; evidence from 2019/20 demographic health survey: Application of bivariate binary logistic regression model. PLoS ONE 2024, 19, e0290111. [Google Scholar] [CrossRef] [PubMed]
- Akseer, N.; Al-Gashm, S.; Mehta, S.; Mokdad, A.; Bhutta, Z.A. Global and regional trends in the nutritional status of young people: A critical and neglected age group. Ann. N. Y. Acad. Sci. 2017, 1393, 3–20. [Google Scholar] [CrossRef]
- Murthi, M.; Shekar, M. Breastfeeding: A Key Investment in Human Capital. Pediatrics 2021, 147, e2020040824. [Google Scholar] [CrossRef]
- Scott, S.P.; Chen-Edinboro, L.P.; Caulfield, L.E.; Murray-Kolb, L.E. The impact of anemia on child mortality: An updated review. Nutrients 2014, 6, 5915–5932. [Google Scholar] [CrossRef]
- Victora, C.G.; Adair, L.; Fall, C.; Hallal, P.C.; Martorell, R.; Richter, L.; Sachdev, H.S.; Maternal and Child Undernutrition Study Group. Maternal and child undernutrition: Consequences for adult health and human capital. Lancet 2008, 371, 340–357. [Google Scholar] [CrossRef]
- Brabin, B.J.; Premji, Z.; Verhoeff, F. An analysis of anemia and child mortality. J. Nutr. 2001, 131, 636S–648S. [Google Scholar] [CrossRef]
- Muhajarine, N.; Adeyinka, D.A.; Matandalasse, M.; Chicumbe, S. Inequities in childhood anaemia at provincial borders in Mozambique: Cross-sectional study results from multilevel Bayesian analysis of 2018 National Malaria Indicator Survey. BMJ Open 2021, 11, e051395. [Google Scholar] [CrossRef]
- Tekeba, B.; Wassie, M.; Mekonen, E.G.; Tamir, T.T.; Aemro, A. Spatial distribution and determinants of anemia among under-five children in Mozambique. Sci. Rep. 2025, 15, 42. [Google Scholar] [CrossRef] [PubMed]
- The World Bank. The World Bank in Mozambique: Overview. 2024. Available online: https://www.worldbank.org/en/country/mozambique/overview (accessed on 2 May 2024).
- United States Census Bureau. Mozambique: Population Vulnerability and Resilience Profile. 2024. Available online: https://www.census.gov/programs-surveys/international-programs/data/population-vulnerability/mozambique.html (accessed on 2 May 2024).
- USAID. Mozambique: Nutrition Profile. 2021. Available online: https://www.usaid.gov/document/mozambique-nutrition-profile (accessed on 2 May 2024).
- United Nations. World Fertility and Family Planning 2020; Population Division; Department of Economic and Social Affairs: New York, NY, USA, 2020; Available online: https://www.un.org/en/development/desa/population/publications/pdf/family/Ten_key_messages%20for%20WFFP2020_highlights.pdf (accessed on 3 July 2024).
- WHO Africa. Health Topics (Mozambique). 2024. Available online: https://www.afro.who.int/countries/mozambique/topic/health-topics-mozambique (accessed on 3 May 2024).
- Instituto Nacional de Estatística (INE); ICF. Inquérito Demográfico e de Saúde em Moçambique 2022–23; Instituto Nacional de Estatística: Maputo, Moçambique; ICF: Rockville, MD, USA, 2024; Available online: https://dhsprogram.com/pubs/pdf/FR389/FR389.pdf (accessed on 20 May 2024).
- Instituto Nacional de Estatística (INE). Moçambique—Inquérito Demográfico e de Saúde 2011. 2011. Available online: https://dhsprogram.com/pubs/pdf/fr266/fr266.pdf (accessed on 3 May 2024).
- The World Bank. Demográfico e de Saúde 2011; Study description; Microdata Library: Washington, DC, USA, 2013; Available online: https://microdata.worldbank.org/index.php/catalog/1563/study-description (accessed on 3 May 2024).
- The World Bank. Inquérito Demográfico e de Saúde 2022–2023; Study description; Microdata Library: Washington, DC, USA, 2024; Available online: https://microdata.worldbank.org/index.php/catalog/6247 (accessed on 3 May 2024).
- Usanzineza, H.; Nsereko, E.; Niyitegeka, J.P.; Uwase, A.; Tuyishime, D.H.; Sunday, F.X.; Mazimpaka, C.; Ahishakiye, J. Prevalence and risk factors for childhood anemia in Rwanda: Using Rwandan demographic and health survey 2019–2020. Public Health Chall. 2024, 3, e159. [Google Scholar] [CrossRef]
- Christian, A.K.; Afful-Dadzie, E.; Marquis, G.S. Infant and young child feeding practices are associated with childhood anaemia and stunting in sub-Saharan Africa. BMC Nutr. 2023, 9, 9. [Google Scholar] [CrossRef] [PubMed]
- Heinrichs, H.; Endris, B.S.; Dejene, T.; Dinant, G.J.; Spigt, M. Anaemia and its determinants among young children aged 6–23 months in Ethiopia (2005–2016). Matern. Child Nutr. 2021, 17, e13082. [Google Scholar] [CrossRef]
- Mohammed, S.; Larijani, B.; Esmaillzadeh, A. Concurrent anemia and stunting in young children: Prevalence, dietary and non-dietary associated factors. Nutr. J. 2019, 18, 10. [Google Scholar] [CrossRef]
- Prieto-Patron, A.; Van der Horst, K.; Hutton, Z.V.; Detzel, P. Association between Anaemia in Children 6 to 23 Months Old and Child, Mother, Household and Feeding Indicators. Nutrients 2018, 10, 1269. [Google Scholar] [CrossRef]
- USAID. Conceptual Frameworks for Anemia. 2013. Available online: https://spring-nutrition.org/sites/default/files/events/multisectoral_anemia_meeting_diagrams.pdf (accessed on 27 May 2024).
- MOST, USAID Micronutrient Program. A Strategic Approach to Anemia Control Programs; MOST, USAID Micronutrient Program: Arlington, VA, USA, 2004. [Google Scholar]
- Owais, A.; Merritt, C.; Lee, C.; Bhutta, Z.A. Anemia among Women of Reproductive Age: An Overview of Global Burden, Trends, Determinants, and Drivers of Progress in Low- and Middle-Income Countries. Nutrients 2021, 13, 2745. [Google Scholar] [CrossRef]
- World Health Organization. Vmnis: Vitamin and Mineral Nutrition Information System. In Hemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity; WHO: Geneva, Switzerland, 2011; Available online: https://www.who.int/publications/i/item/WHO-NMH-NHD-MNM-11.1 (accessed on 20 May 2024).
- Guide to DHS Statistics; ICF: Rockville, MD, USA, 2023. Available online: https://www.dhsprogram.com/pubs/pdf/DHSG1/Guide_to_DHS_Statistics_DHS-8.pdf (accessed on 21 September 2023).
- Wasswa, R.; Kananura, R.M.; Muhanguzi, H.; Waiswa, P. Spatial variation and attributable risk factors of anaemia among young children in Uganda: Evidence from a nationally representative survey. PLOS Glob. Public Health 2023, 3, e0001899. [Google Scholar] [CrossRef]
- Armah-Ansah, E.K. Determinants of anemia among women of childbearing age: Analysis of the 2018 Mali demographic and health survey. Arch. Public Health 2023, 81, 10. [Google Scholar] [CrossRef]
- El Sanharawi, M.; Naudet, F. Comprendre la régression logistique [Understanding logistic regression]. J. Fr. D’ophtalmol. 2013, 36, 710–715. [Google Scholar] [CrossRef]
- Yakum, M.N.; Atanga, F.D.; Ajong, A.B.; Eba Ze, L.E.; Shah, Z. Factors associated with full vaccination and zero vaccine dose in children aged 12–59 months in 6 health districts of Cameroon. BMC Public Health 2023, 23, 1693. [Google Scholar] [CrossRef] [PubMed]
- Danaei, G.; Andrews, K.G.; Sudfeld, C.R.; Fink, G.; McCoy, D.C.; Peet, E.; Sania, A.; Smith Fawzi, M.C.; Ezzati, M.; Fawzi, W.W. Risk Factors for Childhood Stunting in 137 Developing Countries: A Comparative Risk Assessment Analysis at Global, Regional, and Country Levels. PLoS Med. 2016, 13, e1002164. [Google Scholar] [CrossRef] [PubMed]
- StataCorp. Stata Statistical Software: Release 18; StataCorp LLC.: College Station, TX, USA, 2023. [Google Scholar]
- Hailu, B.A. Mapping, trends, and factors associated with anemia among children aged under 5 y in East Africa. Nutrition 2023, 116, 112202. [Google Scholar] [CrossRef]
- Sahiledengle, B.; Mwanri, L.; Agho, K.E. Household environment associated with anaemia among children aged 6–59 months in Ethiopia: A multilevel analysis of Ethiopia demographic and health survey (2005–2016). BMC Public Health 2024, 24, 315. [Google Scholar] [CrossRef]
- Austin, A.M.; Fawzi, W.; Hill, A.G. Anaemia among Egyptian Children between 2000 and 2005: Trends and predictors. Matern. Child Nutr. 2012, 8, 522–532. [Google Scholar] [CrossRef]
- Semedo, R.M.; Santos, M.M.; Baião, M.R.; Luiz, R.R.; da Veiga, G.V. Prevalence of anaemia and associated factors among children below five years of age in Cape Verde, West Africa. J. Health Popul. Nutr. 2014, 32, 646–657. [Google Scholar]
- Fançony, C.; Lavinha, J.; Brito, M.; Barros, H. Anemia in preschool children from Angola: A review of the evidence. Porto Biomed. J. 2020, 5, e60. [Google Scholar] [CrossRef]
- Zavala, E.; Adler, S.; Wabyona, E.; Ahimbisibwe, M.; Doocy, S. Trends and determinants of anemia in children 6–59 months and women of reproductive age in Chad from 2016 to 2021. BMC Nutr. 2023, 9, 117. [Google Scholar] [CrossRef]
- Thorne, C.J.; Roberts, L.M.; Edwards, D.R.; Haque, M.S.; Cumbassa, A.; Last, A.R. Anaemia and malnutrition in children aged 0–59 months on the Bijagós Archipelago, Guinea-Bissau, West Africa: A cross-sectional, population-based study. Paediatr. Int. Child Health 2013, 33, 151–160. [Google Scholar] [CrossRef]
- Shenton, L.M.; Jones, A.D.; Wilson, M.L. Factors associated with anemia status among children aged 6–59 months in Ghana, 2003–2014. Matern. Child Health J. 2020, 24, 483–502. [Google Scholar] [CrossRef]
- Gebreegziabher, T.; Sidibe, S. Prevalence and contributing factors of anaemia among children aged 6–24 months and 25–59 months in Mali. J. Nutr. Sci. 2023, 12, e112. [Google Scholar] [CrossRef] [PubMed]
- Obeagu, E.I.; Obeagu, G.U. Tackling childhood anemia in malaria zones: Comprehensive strategies, challenges, and future directions. Acad. Med. 2024, 1, 1–6. [Google Scholar] [CrossRef]
- United Nations Children’s Fund. The Situation of Children in Mozambique; United Nations Children’s Fund: New York, NY, USA, 2021; Available online: https://www.unicef.org/mozambique/media/4976/file/The%20Situation%20of%20Children%20in%20Mozambique%202021.pdf (accessed on 10 February 2025).
- IPC. Análise da Segurança Alimentar e Nutricional: Mozambique, Abril 2019—Fevereiro 2020 [Food Security and Nutrition Analysis: Mozambique, April 2019–February 2020]; Integrated Food Security Phase Classification (IPC): Rome, Italy, 2020; Available online: https://www.ipcinfo.org/fileadmin/user_upload/ipcinfo/docs/1_IPC_AFI_AMN_Mozambique_2019April2020Feb_Portuguese.pdf (accessed on 13 January 2025).
- IPC. Relatório de Insegurança Alimentar e Desnutrição Aguda: Moçambique, Abril 2024–Março 2025 [Acute Food Insecurity and Acute Malnutrition Report: Mozambique, April 2024–March 2025]; Integrated Food Security Phase Classification (IPC): Rome, Italy, 2024; Available online: https://www.ipcinfo.org/fileadmin/user_upload/ipcinfo/docs/IPC_Mozambique_Acute_Food_Insecurity_Acute_Malnutrition_April2024_Mar2025_Report_Portuguese.pdf (accessed on 13 January 2025).
- OCHA. Mozambique—Intense Tropical Cyclone Chido: Flash Update No. 3; ReliefWeb: New York, NY, USA, 2024; Available online: https://reliefweb.int/report/mozambique/mozambique-intense-tropical-cyclone-chido-flash-update-no-3-18-december-2024-enpt (accessed on 15 January 2025).
- Zhu, Y.; He, C.; Gasparrini, A.; Vicedo-Cabrera, A.M.; Liu, C.; Bachwenkizi, J.; Zhou, L.; Cheng, Y.; Kan, L.; Chen, R.; et al. Global warming may significantly increase childhood anemia burden in sub-Saharan Africa. One Earth 2023, 6, 1388–1399. [Google Scholar] [CrossRef]
- Global Nutrition Report (GNR). Mozambique: The Burden of Malnutrition at a Glance. 2024. Available online: https://globalnutritionreport.org/resources/nutrition-profiles/africa/eastern-africa/mozambique/ (accessed on 20 May 2024).
- World Health Organization. Nutrition Landscape Information System (Nlis): Anaemia; Nutrition and nutrition-related health and development data; WHO: Geneva, Switzerland, 2019; Available online: https://iris.who.int/bitstream/handle/10665/332223/9789241516952-eng.pdf?sequence=1 (accessed on 20 May 2024).
- Maulide Cane, R.; Keita, Y.; Lambo, L.; Pambo, E.; Gonçalves, M.P.; Varandas, L.; Craveiro, I. Prevalence and factors related to anaemia in children aged 6–59 months attending a quaternary health facility in Maputo, Mozambique. Glob. Public Health 2023, 18, 2278876. [Google Scholar] [CrossRef]
- Zavaleta, N.; Astete-Robilliard, L. Efecto de la anemia en el desarrollo infantil: Consecuencias a largo plazo [Effect of anemia on child development: Long-term consequences]. Rev. Peru. Med. Exp. Salud Publica 2017, 34, 716–722. [Google Scholar] [CrossRef]
- Engidaye, G.; Melku, M.; Yalew, A.; Getaneh, Z.; Asrie, F.; Enawgaw, B. Under nutrition, maternal anemia and household food insecurity are risk factors of anemia among preschool aged children in Menz Gera Midir district, Eastern Amhara, Ethiopia: A community based cross-sectional study. BMC Public Health 2019, 19, 968. [Google Scholar] [CrossRef]
- Patel, K.K.; Vijay, J.; Mangal, A.; Mangal, D.K.; Gupta, S.D. Burden of anaemia among children aged 6–59 months and its associated risk factors in India—Are there gender differences? Child. Youth Serv. Rev. 2021, 122, 105918. [Google Scholar] [CrossRef]
- Sun, J.; Wu, H.; Zhao, M.; Magnussen, C.G.; Xi, B. Prevalence and changes of anemia among young children and women in 47 low- and middle-income countries, 2000–2018. eClinicalMedicine 2021, 41, 101136. [Google Scholar] [CrossRef]
- Agho, K.E.; Chitekwe, S.; Rijal, S.; Paudyal, N.; Sahani, S.K.; Akombi-Inyang, B.J. Association between child nutritional anthropometric indices and iron deficiencies among children aged 6–59 months in Nepal. Nutrients 2024, 16, 698. [Google Scholar] [CrossRef]
- Amadu, I.; Seidu, A.A.; Afitiri, A.R.; Ahinkorah, B.O.; Yaya, S. Household cooking fuel type and childhood anaemia in sub-Saharan Africa: Analysis of cross-sectional surveys of 123, 186 children from 29 countries. BMJ Open 2021, 11, e048724. [Google Scholar] [CrossRef]
- Alamneh, T.S.; Melesse, A.W.; Gelaye, K.A. Determinants of anemia severity levels among children aged 6–59 months in Ethiopia: Multilevel Bayesian statistical approach. Sci. Rep. 2023, 13, 4147. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, M.D.L.P.; Lira, P.I.; Coutinho, S.B.; Eickmann, S.H.; Lima MD, C. Influence of breastfeeding type and maternal anemia on hemoglobin concentration in 6-month-old infants. J. Pediatr. (Rio. J.) 2010, 86, 65–72. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=2488de5d5f5e1b0fa4039be710442e3ee0119158 (accessed on 8 July 2024). [CrossRef] [PubMed]
- Zeeshan, F.; Bari, A.; Farhan, S.; Jabeen, U.; Rathore, A.W. Correlation between maternal and childhood VitB12, folic acid and ferritin levels. Pak. J. Med. Sci. 2017, 33, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.d.e.F.; Taddei, J.A.; Konstantyner, T.; Marques, A.C.; Braga, J.A. Correlation between hemoglobin levels of mothers and children on exclusive breastfeeding in the first six months of life. J. Pediatr. 2016, 92, 479–485. [Google Scholar] [CrossRef]
- Miniello, V.L.; Verga, M.C.; Miniello, A.; Di Mauro, C.; Diaferio, L.; Francavilla, R. Complementary feeding and iron status: “The unbearable lightness of being” infants. Nutrients 2021, 13, 4201. [Google Scholar] [CrossRef]
- Mutonhodza, B.; Dembedza, M.P.; Lark, M.R.; Joy EJ, M.; Manzeke-Kangara, M.G.; Njovo, H.; Nyadzayo, T.K.; Kalimbira, A.A.; Bailey, E.H.; Broadley, M.R.; et al. Anemia in children aged 6–59 months was significantly associated with maternal anemia status in rural Zimbabwe. Food Sci. Nutr. 2022, 11, 1232–1246. [Google Scholar] [CrossRef]
- Cane, R.M.; Sheffel, A.; Salomão, C.; Sambo, J.; Matusse, E.; Ismail, E.; António, A.; Manuel, É.; Sawadogo-Lewis, T.; Roberton, T. Structural readiness of health facilities in Mozambique: How is Mozambique positioned to deliver nutrition-specific interventions to women and children? J. Glob. Health Rep. 2023, 7, e2023074. [Google Scholar] [CrossRef]
- Amaro, M. Accelerating progress in micronutrient deficiencies in Mozambique: A Ministry of Health perspective. Matern. Child Nutr. 2019, 15 (Suppl. 1), e12707. [Google Scholar] [CrossRef]
- World Health Organization. Strengthening Primary Health Care with a Community Health Strategy in Mozambique; World Health Organization: Geneva, Switzerland, 2024; Available online: https://www.who.int/news-room/feature-stories/detail/strengthening-primary-health-care-with-a-community-health-strategy-in-mozambique (accessed on 13 September 2024).
- Van Weel, C.; Kidd, M.R. Why strengthening primary health care is essential to achieving universal health coverage. Can. Med. Assoc. J. 2018, 190, E463–E466. [Google Scholar] [CrossRef]
- Gebrehaweria Gebremeskel, M.; Lemma Tirore, L. Factors Associated with Anemia Among Children 6–23 Months of Age in Ethiopia: A Multilevel Analysis of Data from the 2016 Ethiopia Demographic and Health Survey. Pediatr. Health Med. Ther. 2020, 11, 347–357. [Google Scholar] [CrossRef]
- Tegegne, M.; Abate, K.H.; Belachew, T. Anaemia and associated factors among children aged 6–23 months in agrarian community of Bale zone: A cross-sectional study. J. Nutr. Sci. 2022, 11, e96. [Google Scholar] [CrossRef]
- Harding, K.B.; Neufeld, L.M. Iron deficiency and anemia control for infants and young children in malaria-endemic areas: A call to action and consensus among the research community. Adv. Nutr. 2012, 3, 551–554. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, C.; Leets, I.; Puche, R.; Anzola, E.; Montilla, R.; Parra, C.; Aguilera, A.; García-Casal, M.N. A single dose of vitamin A improves haemoglobin concentration, retinol status and phagocytic function of neutrophils in preschool children. Br. J. Nutr. 2010, 103, 798–802. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.D.P.; Pereira, A.D.S.; Simões, B.F.T.; Omena, J.; Cople-Rodrigues, C.D.S.; De Castro, I.R.R.; Citelli, M. Association of vitamin A with anemia and serum hepcidin levels in children aged 6 to 59 mo. Nutrition 2021, 91–92, 111463. [Google Scholar] [CrossRef] [PubMed]
- Imdad, A.; Mayo-Wilson, E.; Haykal, M.R.; Regan, A.; Sidhu, J.; Smith, A.; Bhutta, Z.A. Vitamin A supplementation for preventing morbidity and mortality in children from six months to five years of age. Cochrane Database Syst. Rev. 2022, 3, CD008524. [Google Scholar] [CrossRef]
- Semba, R.D.; de Pee, S.; Ricks, M.O.; Sari, M.; Bloem, M.W. Diarrhea and fever as risk factors for anemia among children under age five living in urban slum areas of Indonesia. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2008, 12, 62–70. [Google Scholar] [CrossRef]
- INS; MISAU; UNICEF. Relatório Sobre Avaliação da Suplementação com Vitamina A nos Cuidados de Saúde Primários nas Províncias de Sofala, Manica, Tete, Zambézia e Nampula (ASUVA)—Uma Avaliação da Implementação. 2022. Available online: https://drive.google.com/file/d/16LDjk_u4TWx9nX3MonjU8rjpK-omlKhy/view (accessed on 28 May 2024).
- Kothari, M.T.; Coile, A.; Huestis, A.; Pullum, T.; Garrett, D.; Engmann, C. Exploring associations between water, sanitation, and anemia through 47 nationally representative demographic and health surveys. Ann. N. Y. Acad. Sci. 2019, 1450, 249–267. [Google Scholar] [CrossRef]
- Li, H.; Xiao, J.; Liao, M.; Huang, G.; Zheng, J.; Wang, H.; Huang, Q.; Wang, A. Anemia prevalence, severity and associated factors among children aged 6–71 months in rural Hunan Province, China: A community-based cross-sectional study. BMC Public Health 2020, 20, 989. [Google Scholar] [CrossRef]
- Barletta, G.; Castigo, F.; Egger, E.M.; Keller, M.; Salvucci, V.; Tarp, F. The impact of COVID-19 on consumption poverty in Mozambique. J. Int. Dev. 2022, 34, 771–802. [Google Scholar] [CrossRef]
- Salvucci, V.; Tarp, F. Poverty and vulnerability in Mozambique: An analysis of dynamics and correlates in light of the Covid-19 crisis using synthetic panels. Rev. Dev. Econ. 2021, 25, 1895–1918. [Google Scholar] [CrossRef]
- Pierce, H.; Foster, K. Health and well-being outcomes of women and children in Sub-Saharan Africa: Examining the role of formal schooling, literacy, and health knowledge. Int. J. Educ. Dev. 2020, 79, 102273. [Google Scholar] [CrossRef]
- República de Moçambique. Política de Género e Estratégia de Implementação. 2018. Available online: https://www.ophenta.org.mz/wp-content/uploads/2017/03/POLITICA-DE-GENERO-e-Estrategia-Implementacao-APROVADA-CM-11.09.2018ooo.pdf (accessed on 24 January 2025).
- Hanna, T.; Meisel, C.; Moyer, J.; Azcona, G.; Bhatt, A.; Duerto Valero, S. Forecasting Time Spent in Unpaid Care and Domestic Work: Technical Brief. UN Women & Frederick S. Pardee Center for International Futures. 2023. Available online: https://www.unwomen.org/sites/default/files/2023-10/technical-brief-forecasting-time-spent-in-unpaid-care-and-domestic-work-en.pdf (accessed on 24 January 2025).
- Baldi, A.J.; Clucas, D.; Pasricha, S.R. Anemia and water, sanitation, and hygiene (WASH)—Is there really a link? Am. J. Clin. Nutr. 2020, 112, 1145–1146. [Google Scholar] [CrossRef] [PubMed]
- Ipa, M.; Isnani, T.; Girsang, V.I.; Amila Harianja, E.S.; Purba, Y.; Wandra, T.; Budke, C.M.; Purba, I.E. Soil-transmitted helminth infections and anemia in children attending government run schools on Samosir Island, Indonesia. Parasite Epidemiol. Control 2024, 25, e00344. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Abid, J.; Akram, S.; Shah HB, U.; Farooq, U.; Ahmad, A.M.R. Zinc status or supplementation and its relation to soil-transmitted helminthiasis in children: A systematic review. Parasite Immunol. 2024, 46, e13015. [Google Scholar] [CrossRef]
- Molla, E.; Mamo, H. Soil-transmitted helminth infections, anemia and undernutrition among schoolchildren in Yirgacheffee, South Ethiopia. BMC Res. Notes 2018, 11, 585. [Google Scholar] [CrossRef]
- Bauleni, A.; Tiruneh, F.N.; Mwenyenkulu, T.E.; Nkoka, O.; Chirwa, G.C.; Gowelo, S.; Chipeta, M.G.; Ntenda, P.A.M. Effects of deworming medication on anaemia among children aged 6–59 months in sub-Saharan Africa. Parasites Vectors 2022, 15, 7. [Google Scholar] [CrossRef]
- Bountogo, M.; Ouattara, M.; Sié, A.; Compaoré, G.; Dah, C.; Boudo, V.; Zakane, A.; Lebas, E.; Brogdon, J.M.; Godwin, W.W.; et al. Access to Improved Sanitation and Nutritional Status among Preschool Children in Nouna District, Burkina Faso. Am. J. Trop. Med. Hyg. 2021, 104, 1540–1545. [Google Scholar] [CrossRef]
- Arntson, L.; McLaughlin, K.R.; Smit, E. Factors influencing fever care-seeking for children under five years of age in The Gambia: A secondary analysis of 2019–20 DHS data. Malar. J. 2024, 23, 124. [Google Scholar] [CrossRef]
- USAID. Mozambique Nutrition Profile; U.S. Agency for International Development: Washington, DC, USA, 2017. Available online: https://pdf.usaid.gov/pdf_docs/PA00TJJK.pdf (accessed on 13 January 2025).
Variable | 2011 (n = 4597) | 2022 (n = 3546) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Overall | Severe | Moderate | Mild | Not Anemic | Overall | Severe | Moderate | Mild | Not Anemic | |
Child’s age (in months) | ||||||||||
6–11 | 15.1 | 25.1 | 15.2 | 13.6 | 8.0 | 13.4 | 16.5 | 14.2 | 11.8 | 4.8 |
12–23 | 28.1 | 38.1 | 30.6 | 22.8 | 17.4 | 26.3 | 38.7 | 27.0 | 23.3 | 13.9 |
24–35 | 20.7 | 17.9 | 20.4 | 21.6 | 22.7 | 24.4 | 28.3 | 24.6 | 23.6 | 22.2 |
36–47 | 19.7 | 16.1 | 19.5 | 20.5 | 25.3 | 18.9 | 9.7 | 18.5 | 20.9 | 26.7 |
48–59 | 16.3 | 2.8 | 14.3 | 21.6 | 26.6 | 17.0 | 6.8 | 15.8 | 20.4 | 32.5 |
Gender of child | ||||||||||
Male | 49.4 | 47.1 | 51.8 | 46.0 | 49.8 | 48.3 | 51.9 | 49.4 | 46.2 | 47.2 |
Female | 50.6 | 52.9 | 48.2 | 54.0 | 50.2 | 51.7 | 48.1 | 50.6 | 53.8 | 52.8 |
Child illness | ||||||||||
No | 74.6 | 64.2 | 73.7 | 77.5 | 82.4 | 81.3 | 78.0 | 81.1 | 82.0 | 84.7 |
Yes | 25.4 | 35.8 | 26.3 | 22.5 | 17.6 | 18.7 | 22.0 | 18.9 | 18.0 | 15.3 |
Children aged 6–59 months given vit. A supplement | ||||||||||
No | 27.7 | 28.9 | 30.2 | 24.0 | 21.3 | 52.3 | 66.1 | 54.4 | 47.1 | 43.2 |
Yes | 72.3 | 71.1 | 69.8 | 76.0 | 78.7 | 47.7 | 33.9 | 45.6 | 52.9 | 56.8 |
Feeding characteristics | ||||||||||
Feeding: Group 1 (cereals, roots, and tubers) | ||||||||||
No | 35.9 | 31.0 | 35.2 | 37.7 | 40.8 | 54.0 | 55.1 | 52.4 | 56.2 | 64.2 |
Yes | 64.1 | 69.0 | 64.8 | 62.3 | 59.2 | 46.0 | 44.9 | 47.6 | 43.8 | 35.8 |
Feeding: Group 2 (legumes and nuts) | ||||||||||
No | 75.8 | 77.7 | 75.1 | 76.5 | 81.0 | 87.9 | 85.7 | 88.1 | 87.9 | 87.8 |
Yes | 24.2 | 22.3 | 24.9 | 23.5 | 19.0 | 12.1 | 14.3 | 11.9 | 12.1 | 12.2 |
Feeding: Group 3 ((dairy products (milk, yogurt, cheese)) | ||||||||||
No | 90.5 | 91.1 | 91.1 | 89.4 | 89.5 | 95.4 | 94.6 | 96.2 | 94.2 | 95.4 |
Yes | 9.5 | 8.9 | 8.9 | 10.6 | 10.5 | 4.6 | 5.4 | 3.8 | 5.8 | 4.6 |
Feeding: Group 4 [flesh foods (meat, fish, fowl, liver, other organs, and eggs)] | ||||||||||
No | 61.9 | 59.8 | 61.9 | 62.3 | 66.1 | 80.3 | 82.5 | 80.2 | 80.0 | 85.4 |
Yes | 38.1 | 40.2 | 38.1 | 37.7 | 33.9 | 19.7 | 17.5 | 19.8 | 20.0 | 14.6 |
Feeding: Group 5 (fruits and vegetables) | ||||||||||
No | 46.2 | 39.3 | 45.8 | 47.9 | 50.8 | 74.4 | 75.8 | 73.6 | 75.4 | 80.7 |
Yes | 53.8 | 60.7 | 54.2 | 52.1 | 49.2 | 25.6 | 24.2 | 26.4 | 24.6 | 19.3 |
Feeding: Group 6 (oils and fats) | ||||||||||
No | 73.3 | 77.9 | 74.0 | 71.5 | 73.1 | - | - | - | - | - |
Yes | 26.7 | 22.1 | 26.0 | 28.5 | 26.9 | - | - | - | - | - |
Feeding diversity score | ||||||||||
0 | 29.7 | 23.6 | 28.5 | 32.4 | 37.0 | 50.1 | 48.4 | 48.4 | 52.7 | 62.5 |
1 | 9.1 | 13.2 | 9.7 | 7.6 | 7.4 | 11.7 | 14.5 | 12.3 | 10.6 | 6.9 |
2 | 26.4 | 27.7 | 27.3 | 24.9 | 23.6 | 22.4 | 23.6 | 24.5 | 19.4 | 16.7 |
3 | 16.3 | 14.2 | 16.2 | 16.8 | 15.9 | 11.8 | 10.0 | 11.2 | 12.9 | 9.8 |
4+ | 18.5 | 21.4 | 18.4 | 18.3 | 16 | 3.9 | 3.5 | 3.6 | 4.5 | 4.1 |
Caregivers’ characteristics | ||||||||||
Education level | ||||||||||
No education | 38.5 | 41.5 | 39.4 | 36.8 | 33.1 | 33.7 | 39.3 | 34.3 | 31.9 | 28.2 |
Primary | 52.7 | 51.3 | 53.8 | 51.3 | 49.7 | 49.0 | 58.4 | 51.5 | 44.0 | 45.5 |
Secondary/Higher | 8.8 | 7.3 | 6.8 | 11.9 | 17.2 | 17.3 | 2.2 | 14.2 | 24.1 | 26.3 |
At least 4 ANC visits | ||||||||||
Fewer than 4 visits | 81.7 | 82.0 | 83.1 | 79.5 | 79.8 | 84.2 | 91.7 | 84.5 | 82.7 | 89.2 |
4+ visits | 18.3 | 18.0 | 16.9 | 20.5 | 20.2 | 15.8 | 8.3 | 15.5 | 17.3 | 10.8 |
Household characteristics | ||||||||||
Wealth index | ||||||||||
Poorest | 27.0 | 44.4 | 29.9 | 20.0 | 17.0 | 29.2 | 48.8 | 32.4 | 21.6 | 20.1 |
Poorer | 25.1 | 29.1 | 25.7 | 23.4 | 17.6 | 24.5 | 31.5 | 26.7 | 20.3 | 18.9 |
Middle | 18.4 | 14.6 | 18.6 | 18.8 | 20.1 | 19.2 | 12.7 | 17.5 | 22.8 | 21.0 |
Richer | 18.7 | 9.6 | 16.7 | 23.2 | 23.2 | 17.4 | 5.5 | 15.2 | 22.4 | 20.9 |
Richest | 10.7 | 2.2 | 9.1 | 14.6 | 22.2 | 9.7 | 1.7 | 8.2 | 13.1 | 19.0 |
Sex of household head | ||||||||||
Male | 71.0 | 70.8 | 71.8 | 70.0 | 71.4 | 75.8 | 81.9 | 75.6 | 75.1 | 75.2 |
Female | 29.0 | 29.2 | 28.2 | 30.0 | 28.6 | 24.2 | 18.1 | 24.4 | 24.9 | 24.8 |
Source of drinking water | ||||||||||
Improved | 30.3 | 17.2 | 26.4 | 38.2 | 46.4 | 52.3 | 38.3 | 49.0 | 59.4 | 65.6 |
Unimproved | 69.7 | 82.8 | 73.6 | 61.8 | 53.6 | 47.7 | 61.7 | 51.0 | 40.6 | 34.4 |
Type of toilet facility | ||||||||||
Improved | 20.2 | 12.0 | 18.0 | 24.6 | 29.7 | 24.6 | 19.7 | 22.6 | 28.2 | 28.6 |
Unimproved | 79.8 | 88.0 | 82.0 | 75.4 | 70.3 | 75.4 | 80.3 | 77.4 | 71.8 | 71.4 |
All children under 5 slept under a mosquito net | ||||||||||
No | 64.5 | 65.7 | 65.1 | 63.3 | 64.5 | 60.2 | 55.0 | 60.8 | 60.0 | 62.8 |
Yes | 35.5 | 34.3 | 34.9 | 36.7 | 35.5 | 39.8 | 45.0 | 39.2 | 40.0 | 37.2 |
Pollution within household | ||||||||||
No | 1.3 | 0.3 | 0.8 | 2.1 | 2.7 | 1.5 | 0.0 | 1.1 | 2.4 | 5.1 |
Yes | 98.7 | 99.7 | 99.2 | 97.9 | 97.3 | 98.5 | 100.0 | 98.9 | 97.6 | 94.9 |
Community factors | ||||||||||
Residence area | ||||||||||
Urban | 33.9 | 10.7 | 21.1 | 27.5 | 33.9 | 24.4 | 6.2 | 21.6 | 31.3 | 36.2 |
Rural | 66.1 | 89.3 | 78.9 | 72.5 | 66.1 | 75.6 | 93.8 | 78.4 | 68.7 | 63.8 |
Province | ||||||||||
Niassa | 7.0 | 6.6 | 5.7 | 5.0 | 7.0 | 7.0 | 2.9 | 6.0 | 9.2 | 13.3 |
Cabo Delgado | 6.5 | 11.7 | 10.2 | 7.1 | 6.5 | 7.2 | 7.7 | 8.0 | 6.0 | 4.9 |
Nampula | 13.2 | 17.7 | 16.4 | 16.0 | 13.2 | 31.7 | 55.8 | 35.5 | 22.5 | 16.1 |
Zambezia | 15.0 | 42.5 | 26.9 | 19.8 | 15.0 | 17.9 | 20.0 | 18.6 | 16.6 | 15.5 |
Tete | 13.4 | 4.9 | 12.2 | 14.2 | 13.4 | 9.7 | 3.7 | 8.7 | 12.0 | 13.7 |
Manica | 8.3 | 7.3 | 7.3 | 7.8 | 8.3 | 7.3 | 0.7 | 5.3 | 11.2 | 9.2 |
Sofala | 11.6 | 3.1 | 8.0 | 10.6 | 11.6 | 7.6 | 8.2 | 8.4 | 6.4 | 5.8 |
Inhambane | 5.7 | 1.7 | 3.9 | 5.5 | 5.7 | 3.1 | 0.7 | 2.9 | 3.6 | 4.3 |
Gaza | 6.0 | 2.9 | 4.3 | 4.5 | 6.0 | 3.4 | 0.4 | 3.0 | 4.6 | 4.2 |
Maputo provincia | 8.1 | 0.7 | 2.9 | 6.1 | 8.1 | 3.9 | 0.0 | 3.0 | 5.9 | 8.6 |
Maputo cidade | 5.2 | 1.0 | 2.2 | 3.4 | 5.2 | 1.1 | 0.0 | 0.6 | 2.1 | 4.4 |
Variable | Model 1 (Empty) | Model 2 aOR [95%CI] | Model 3 aOR [95%CI] | Model 4 aOR [95%CI] | Model 5 aOR [95%CI] |
---|---|---|---|---|---|
Age of the mother | 0.99 [0.98, 1.01] | 0.99 [0.98, 1.01] | 0.99 [0.98, 1.01] | ||
Education level | |||||
No education † | 1.00 | 1.00 | 1.00 | ||
Primary | 0.95 [0.81, 1.11] | 1.02 [0.86, 1.20] | 1.02 [0.86, 1.21] | ||
Secondary/Higher | 0.60 [0.48, 0.76] ** | 0.78 [0.56, 1.08] | 0.77 [0.55, 1.08] | ||
At least 4 ANC visits | |||||
Fewer than 4 visits † | 1.00 | 1.00 | 1.00 | ||
4+ visits | 0.98 [0.78, 1.22] | 1.01 [0.80, 1.28] | 1.01 [0.80, 1.28] | ||
Child’s age (in months) | |||||
6–11 † | 1.00 | 1.00 | 1.00 | ||
12–23 | 0.77 [0.61, 0.96] * | 0.77 [0.62, 0.96] * | 0.75 [0.62, 0.89] ** | ||
24–35 | 0.40 [0.31, 0.51] ** | 0.40 [0.31, 0.51] ** | 0.36 [0.28, 0.47] ** | ||
36–47 | 0.28 [0.23, 0.34] ** | 0.28 [0.23, 0.35] ** | 0.26 [0.20, 0.32] ** | ||
48–59 | 0.20 [0.16, 0.25] ** | 0.20 [0.16, 0.26] ** | 0.20 [0.17, 0.25] ** | ||
Child illness | |||||
No † | 1.00 | 1.00 | 1.00 | ||
Yes | 1.40 [1.14, 1.72] ** | 1.44 [1.18, 1.75] ** | 1.44 [1.18, 1.74] ** | ||
Children aged 6–59 months given vit. A supplement | |||||
No † | 1.00 | 1.00 | 1.00 | ||
Yes | 0.77 [0.65, 0.92] ** | 0.80 [0.69, 0.94] ** | 0.80 [0.69, 0.93] ** | ||
Feeding diversity score | 0.99 [0.95, 1.02] | ||||
0 | 1.00 | 1.00 | 1.00 | ||
1 | 1.08 [0.77, 1.51] | 1.04 [0.73, 1.48] | 1.04 [0.72, 1.50] | ||
2 | 0.90 [0.73, 1.11] | 0.88 [0.71, 1.10] | 0.87 [0.69, 1.09] | ||
3 | 0.92 [0.76, 1.12] | 0.92 [0.75, 1.13] | 0.91 [0.74, 1.12] | ||
4+ | 0.98 [0.86, 1.12] | 0.99 [0.85, 1.16] | 0.98 [0.84, 1.14] | ||
Wealth index | |||||
Poorest † | 1.00 | 1.00 | 1.00 | ||
Poorer | 1.04 [0.90, 1.20] | 1.06 [0.90, 1.26] | 1.02 [0.84, 1.23] | ||
Middle | 0.82 [0.67, 1.02] | 0.87 [0.71, 1.07] | 0.83 [0.69, 1.01] | ||
Richer | 0.81 [0.67, 0.98] * | 0.88 [0.74, 1.06] | 0.84 [0.71, 1.00] | ||
Richest | 0.59 [0.43, 0.81] ** | 0.67 [0.47, 0.97] * | 0.69 [0.46, 1.03] | ||
Sex of household head | |||||
Male † | 1.00 | 1.00 | 1.00 | ||
Female | 1.12 [0.98, 1.28] | 1.15 [1.01, 1.31] * | 1.16 [1.01, 1.32] * | ||
Source of drinking water | |||||
Improved † | 1.00 | 1.00 | 1.00 | ||
Unimproved | 1.38 [1.19, 1.59] ** | 1.41 [1.19, 1.67] ** | 1.40 [1.19, 1.65] ** | ||
Type of toilet facility | |||||
Improved † | 1.00 | 1.00 | 1.00 | ||
Unimproved | 0.98 [0.72, 1.33] | 0.97 [0.71, 1.32] | 0.96 [0.71, 1.31] | ||
Residence area | |||||
Urban † | 1.00 | 1.00 | 1.00 | ||
Rural | 1.12 [0.95, 1.33] | 1.11 [0.92, 1.33] | 1.11 [0.93, 1.34] | ||
Child’s age # child illness | |||||
6–11 # No illness | 1.00 | ||||
6–11 # Had illness | 1.00 [0.99, 1.00] | ||||
12–23 # No illness | 1.00 | ||||
12–23 # Had illness | 1.20 [0.76, 1.90] | ||||
24–35 # No illness | 1.00 | ||||
24–35 # Had illness | 1.52 [1.01, 2.29] * | ||||
36–47 # No illness | 1.00 | ||||
36–47 # Had illness | 1.61 [1.03, 2.52] * | ||||
48–59 # No illness | 1.00 | ||||
48–59 # Had illness | 0.85 [0.53, 1.37] | ||||
Wealth index # child illness | |||||
Poorest # No illness | 1.00 | ||||
Poorest # Had illness | 0.99 [0.99, 1.00] | ||||
Poorer # No illness | 1.00 | ||||
Poorer # Had illness | 1.29 [0.89, 1.88] | ||||
Middle # No illness | 1.00 | ||||
Middle # Had illness | 1.25 [1.08, 1.45] ** | ||||
Richer # No illness | 1.00 | ||||
Richer # Had illness | 1.32 [0.94, 1.86] | ||||
Richest # No illness | 1.00 | ||||
Richest # Had illness | 0.93 [0.54, 1.61] | ||||
Survey year | |||||
2011 | 1.00 | 1.00 | 1.00 | 1.00 | |
2022 | 1.17 [0.95, 1.45] | 1.23 [0.97, 1.55] | 1.28 [1.06, 1.56] * | 1.28 [1.05, 1.55] * | |
Random effect | |||||
Regional-level variance (SE) | 0.20 (0.08) | 0.16(0.05) | 0.08 (0.03) | 0.09(0.03) | 0.09(0.03) |
Region > community level variance (SE) | 0.44 (0.15) | 0.49(0.17) | 0.39(0.13) | 0.47(0.16) | 0.47(0.16) |
Regional ICC (%) | 5.1 | 4.0 | 2.2 | 2.4 | 2.4 |
Community|region ICC (%) | 16.4 | 16.5 | 12.6 | 14.6 | 14.6 |
Model fit statistics | |||||
Log likelihood | −4.675 | −4.430 | −4.627 | −4.399 | −4.391 |
AIC | 9.355 | 8.881 | 9.274 | 8.818 | 8.802 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maulide Cane, R.; Muhumuza Kananura, R.; Wasswa, R.; Gonçalves, M.P.; Varandas, L.; Craveiro, I. Childhood Anemia in Mozambique: A Multilevel Mixed-Effects Analysis of 2011–2022/23 Population-Based Surveys. Healthcare 2025, 13, 635. https://doi.org/10.3390/healthcare13060635
Maulide Cane R, Muhumuza Kananura R, Wasswa R, Gonçalves MP, Varandas L, Craveiro I. Childhood Anemia in Mozambique: A Multilevel Mixed-Effects Analysis of 2011–2022/23 Population-Based Surveys. Healthcare. 2025; 13(6):635. https://doi.org/10.3390/healthcare13060635
Chicago/Turabian StyleMaulide Cane, Réka, Rornald Muhumuza Kananura, Ronald Wasswa, Maria Patrícia Gonçalves, Luís Varandas, and Isabel Craveiro. 2025. "Childhood Anemia in Mozambique: A Multilevel Mixed-Effects Analysis of 2011–2022/23 Population-Based Surveys" Healthcare 13, no. 6: 635. https://doi.org/10.3390/healthcare13060635
APA StyleMaulide Cane, R., Muhumuza Kananura, R., Wasswa, R., Gonçalves, M. P., Varandas, L., & Craveiro, I. (2025). Childhood Anemia in Mozambique: A Multilevel Mixed-Effects Analysis of 2011–2022/23 Population-Based Surveys. Healthcare, 13(6), 635. https://doi.org/10.3390/healthcare13060635