The Role of Lipid Biomarkers in Major Depression
Abstract
:1. Introduction
2. Cholesterol
2.1. Cardiovascular Disease and Major Depressive Disorder
2.2. HDL and LDL in Major Depressive Disorder
2.3. Cholesterol and Other Psychiatric Disorders
2.4. Mechanism of Action of Cholesterol
2.5. Targeting Cholesterol Pathways as Antidepressant Therapy
3. Polyunsaturated Fatty Acids (PUFAs)
3.1. Absolute PUFA Levels and MDD
3.2. Ratios of PUFA Sub-Types and MDD
3.3. Mechanism of Action of Polunsaturated Fatty Acids
3.4. Supplementation of Omega-3 PUFAs as A Potential Antidepressant Therapy
3.5. Role of Enzymes in Fatty Acid Metabolism
4. Other Lipids Biomarkers and MDD
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bogavac-Stanojevic, N.; Lakic, D. Biomarkers for major depressive disorder: Economic considerations. Drug Dev. Res. 2016, 77, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Fava, M.; Kendler, K.S. Major depressive disorder. Neuron 2000, 28, 335–341. [Google Scholar] [CrossRef]
- Smith, D.J.; Nicholl, B.I.; Cullen, B.; Martin, D.; Ul-Haq, Z.; Evans, J.; Gill, J.M.; Roberts, B.; Gallacher, J.; Mackay, D.; et al. Prevalence and characteristics of probable major depression and bipolar disorder within uk biobank: Cross-sectional study of 172,751 participants. PLoS ONE 2013, 8, e75362. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (Dsm-5®); American Psychiatric Pub: Arlington, VA, USA, 2013. [Google Scholar]
- Woo, J.-M.; Kim, W.; Hwang, T.-Y.; Frick, K.D.; Choi, B.H.; Seo, Y.-J.; Kang, E.-H.; Kim, S.J.; Ham, B.-J.; Lee, J.-S.; et al. Impact of depression on work productivity and its improvement after outpatient treatment with antidepressants. Value Health 2011, 14, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Mueller, T.I.; Leon, A.C. Recovery, chronicity, and levels of psychopathology in major depression. Psychiatr. Clin. N. Am. 1996, 19, 85–102. [Google Scholar] [CrossRef]
- Posternak, M.A.; Solomon, D.A.; Leon, A.C.; Mueller, T.I.; Shea, M.T.; Endicott, J.; Keller, M.B. The naturalistic course of unipolar major depression in the absence of somatic therapy. J. Nerv. Ment. Dis. 2006, 194, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Blair-West, G.W.; Cantor, C.H.; Mellsop, G.W.; Eyeson-Annan, M.L. Lifetime suicide risk in major depression: Sex and age determinants. J. Affect. Disord. 1999, 55, 171–178. [Google Scholar] [CrossRef]
- Alboni, P.; Favaron, E.; Paparella, N.; Sciammarella, M.; Pedaci, M. Is there an association between depression and cardiovascular mortality or sudden death? J. Cardiovasc. Med. 2008, 9, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.J.; Vaze, A.; Rao, S. Clinical diagnosis of depression in primary care: A meta-analysis. Lancet 2009, 374, 609–619. [Google Scholar] [CrossRef]
- De Sousa, R.T.; V Zanetti, M.; R Brunoni, A.; Machado-Vieira, R. Challenging treatment–resistant major depressive disorder: A roadmap for improved therapeutics. Curr. Neuropharmacol. 2015, 13, 616–635. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, I. Antidepressants and the placebo effect. Z. Psychol. 2014, 222, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Domenici, E.; Willé, D.R.; Tozzi, F.; Prokopenko, I.; Miller, S.; McKeown, A.; Brittain, C.; Rujescu, D.; Giegling, I.; Turck, C.W.; et al. Plasma protein biomarkers for depression and schizophrenia by multi analyte profiling of case-control collections. PLoS ONE 2010, 5, e9166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, R.W.; Jenkins, C.M.; Yang, J.; Mancuso, D.J.; Han, X. Functional lipidomics: The roles of specialized lipids and lipid-protein interactions in modulating neuronal function. Prostag. Oth. Lipid. Mediat. 2005, 77, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Tsui-Pierchala, B.A.; Encinas, M.; Milbrandt, J.; Johnson, E.M. Lipid rafts in neuronal signaling and function. Trends Neurosci. 2002, 25, 412–417. [Google Scholar] [CrossRef]
- Partonen, T.; Haukka, J.; Virtamo, J.; Taylor, P. Association of low serum total cholesterol with major depression and suicide. Br. J. Psychiatry 1999, 175, 259–262. [Google Scholar] [CrossRef]
- Björkhem, I.; Meaney, S. Brain cholesterol: Long secret life behind a barrier. Arterioscler. Thromb. 2004, 24, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Saher, G.; Brügger, B.; Lappe-Siefke, C.; Möbius, W.; Tozawa, R.-I.; Wehr, M.C.; Wieland, F.; Ishibashi, S.; Nave, K.-A. High cholesterol level is essential for myelin membrane growth. Nat. Neurosci. 2005, 8, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Dietschy, J.M.; Turley, S.D. Thematic review series: Brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J. Lipid Res. 2004, 45, 1375–1397. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, Q. Cholesterol metabolism and homeostasis in the brain. Protein Cell 2015, 6, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Jadhav, A.; Petkar, S.; Dubey, V. Study of lipid derangement in pyschiatric disorder. Indian Med. Gaz. 2013, 253–256. [Google Scholar]
- Alphonse, P.A.; Jones, P.J. Revisiting human cholesterol synthesis and absorption: The reciprocity paradigm and its key regulators. Lipids 2016, 51, 519–536. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.P.; Reichel, M.; Muehle, C.; Rhein, C.; Gulbins, E.; Kornhuber, J. Brain membrane lipids in major depression and anxiety disorders. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2015, 1851, 1052–1065. [Google Scholar] [CrossRef] [PubMed]
- Lütjohann, D.; Stroick, M.; Bertsch, T.; Kühl, S.; Lindenthal, B.; Thelen, K.; Andersson, U.; Björkhem, I.; Von Bergmann, K.; Fassbender, K. High doses of simvastatin, pravastatin, and cholesterol reduce brain cholesterol synthesis in guinea pigs. Steroids 2004, 69, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Ariyo, A.A.; Haan, M.; Tangen, C.M.; Rutledge, J.C.; Cushman, M.; Dobs, A.; Furberg, C.D.; Group, C.H.S.C.R. Depressive symptoms and risks of coronary heart disease and mortality in elderly americans. Circulation 2000, 102, 1773–1779. [Google Scholar] [CrossRef] [PubMed]
- Penninx, B.W.; Beekman, A.T.; Honig, A.; Deeg, D.J.; Schoevers, R.A.; Van Eijk, J.T.; Van Tilburg, W. Depression and cardiac mortality: Results from a community-based longitudinal study. Arch. Gen. Psychiatry 2001, 58, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Alexander, J.; Christopher, E.; Kuchibhatla, M.; Gaulden, L.H.; Cuffe, M.S.; Blazing, M.A.; Davenport, C.; Califf, R.M.; Krishnan, R.R.; et al. Relationship of depression to increased risk of mortality and rehospitalization in patients with congestive heart failure. Arch. Intern. Med. 2001, 161, 1849–1856. [Google Scholar] [CrossRef] [PubMed]
- Martens, E.J.; Hoen, P.W.; Mittelhaeuser, M.; De Jonge, P.; Denollet, J. Symptom dimensions of post-myocardial infarction depression, disease severity and cardiac prognosis. Psychol. Med. 2010, 40, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Travella, J.I.; Forrester, A.W.; Schultz, S.K.; Robinson, R.G. Depression following myocardial infarction: A one year longitudinal study. Int. J. Psychiatry Med. 1994, 24, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Steeds, R.P.; Bickerton, D.; Smith, M.J.; Muthusamy, R. Assessment of depression following acute myocardial infarction using the beck depression inventory. Heart 2004, 90, 217–218. [Google Scholar] [CrossRef] [PubMed]
- Trpkovic, A.; Resanovic, I.; Stanimirovic, J.; Radak, D.; Mousa, S.A.; Cenic-Milosevic, D.; Jevremovic, D.; Isenovic, E.R. Oxidized low-density lipoprotein as a biomarker of cardiovascular diseases. Crit. Rev. Clin. Lab. Sci. 2015, 52, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Barter, P. The role of hdl-cholesterol in preventing atherosclerotic disease. Eur. Heart J. Suppl. 2005, 7, F4–F8. [Google Scholar] [CrossRef]
- Terao, T.; Iwata, N.; Kanazawa, K.; Takano, T.; Takahashi, N.; Hayashi, T.; Sugawara, Y. Low serum cholesterol levels and depressive state in human dock visitors. Acta Psychiatr. Scand. 2000, 101, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Horsten, M.; Wamala, S.P.; Vingerhoets, A.; Orth-Gomer, K. Depressive symptoms, social support, and lipid profile in healthy middle-aged women. Psychosom. Med. 1997, 59, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Rabe-Jabłońska, J.; Poprawska, I. Levels of serum total cholesterol and ldl-cholesterol in patients with major depression in acute period and remission. Med. Sci. Monit. 2000, 6, 539–547. [Google Scholar] [PubMed]
- Olusi, S.O.; Fido, A.A. Serum lipid concentrations in patients with major depressive disorder. Biol. Psychiatry 1996, 40, 1128–1131. [Google Scholar] [CrossRef]
- Lehto, S.M.; Niskanen, L.; Tolmunen, T.; Hintikka, J.; Viinamaki, H.; Heiskanen, T.; Honkalampi, K.; Kokkonen, M.; Koivumaa-Honkanen, H. Low serum hdl-cholesterol levels are associated with long symptom duration in patients with major depressive disorder. Psychiatry Clin. Neurosci. 2010, 64, 279–283. [Google Scholar] [CrossRef] [PubMed]
- De Freitas, J.A.; Lima, L.M.; Ranieri, J.L.; Olivieri, J.C.; Fragoso, H.J.; Chinzon, D. Evaluation of efficacy, safety and tolerability rabeprazole in treatment of acid-peptic diseases. Arq. Gastroenterol. 2002, 39, 60–65. [Google Scholar] [PubMed]
- Sadeghi, M.; Roohafza, H.; Afshar, H.; Rajabi, F.; Ramzani, M.; Shemirani, H.; Sarafzadeghan, N. Relationship between depression and apolipoproteins a and b: A case-control study. Clinics 2011, 66, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.L.; Salive, M.E.; Harris, T.B.; Simonsick, E.M.; Guarlnik, J.; Kohout, F.J. Low cholesterol concentrations and severe depressive symptoms in elderly people. BMJ 1994, 308, 1328–1332. [Google Scholar] [CrossRef] [PubMed]
- Ergun, U.G.; Uguz, S.; Bozdemir, N.; Guzel, R.; Burgut, R.; Saatci, E.; Akpinar, E. The relationship between cholesterol levels and depression in the elderly. Int. J. Geriatr. Psychiatry 2004, 19, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.-L. Serum lipid profiles in major depression with clinical subtypes, suicide attempts and episodes. J. Affect. Disord. 2005, 86, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.Y.; Suls, J.; Martin, R. Are cholesterol and depression inversely related? A meta-analysis of the association between two cardiac risk factors. Ann. Behav. Med. 2008, 36, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Persons, J.E.; Fiedorowicz, J.G. Depression and serum low-density lipoprotein: A systematic review and meta-analysis. J. Affect. Disord. 2016, 206, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Guardiola, M.; Sola, R.; Vallve, J.C.; Girona, J.; Godas, G.; Heras, M.; Gonzalez, M.; Rock, E.; Winklhoffer-Roob, B.M.; Masana, L.; et al. Body mass index correlates with atherogenic lipoprotein profile even in nonobese, normoglycemic, and normolipidemic healthy men. J. Clin. Lipidol. 2015, 9, 824–831. [Google Scholar] [CrossRef] [PubMed]
- Simon, G.E.; Von Korff, M.; Saunders, K.; Miglioretti, D.L.; Crane, P.K.; Van Belle, G.; Kessler, R.C. Association between obesity and psychiatric disorders in the us adult population. Arch. Gen. Psychiatry 2006, 63, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Bjerkeset, O.; Romundstad, P.; Evans, J.; Gunnell, D. Association of adult body mass index and height with anxiety, depression, and suicide in the general population. Am. J. Epidemiol. 2008, 167, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Ho, R.C.M.; Niti, M.; Kua, E.H.; Ng, T.P. Body mass index, waist circumference, waits-hip ratio and depressive symptoms in chinese elderly: A population-based study. Int. J. Geriatr. Psychiatry 2008, 23, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Colin, A.; Reggers, J.; Castronovo, V.; Ansseau, M. Lipids, depression and suicide. Encephale 2002, 29, 49–58. [Google Scholar]
- Boston, P.F.; Dursun, S.M.; Reveley, M.A. Cholesterol and mental disorder. Br. J. Psychiatry 1996, 169, 682–689. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Smith, R.; Christophe, A.; Vandoolaeghe, E.; Gastel, A.V.; Neels, H.; Demedts, P.; Wauters, A.; Meltzer, H. Lower serum high-density lipoprotein cholesterol (hdl-c) in major depression and in depressed men with serious suicidal attempts: Relationship with immune-inflammatory markers. Acta Psychiatr. Scand. 1997, 95, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Sarchiapone, M.; Camardese, G.; Roy, A.; Della Casa, S.; Satta, M.A.; Gonzalez, B.; Berman, J.; De Risio, S. Cholesterol and serotonin indices in depressed and suicidal patients. J. Affect. Disord. 2001, 62, 217–219. [Google Scholar] [CrossRef]
- Atmaca, M.; Kuloglu, M.; Tezcan, E.; Ustundag, B.; Gecici, O.; Firidin, B. Serum leptin and cholesterol values in suicide attempters. Neuropsychobiology 2002, 45, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Kunugi, H.; Takei, N.; Aoki, H.; Nanko, S. Low serum cholesterol in suicide attempters. Biol. Psychiatry 1997, 41, 196–200. [Google Scholar] [CrossRef]
- Zureik, M.; Courbon, D.; Ducimetiere, P. Serum cholesterol concentration and death from suicide in men: Paris prospective study I. BMJ 1996, 313, 649–651. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Lee, H.J.; Kim, J.Y.; Yoon, D.K.; Choi, S.H.; Lee, M.S. Low serum cholesterol is correlated to suicidality in a korean sample. Acta Psychiatr. Scand. 2002, 105, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Ellison, L.F.; Morrison, H.I. Low serum cholesterol concentration and risk of suicide. Epidemiology 2001, 12, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Bocchetta, A.; Chillotti, C.; Carboni, G.; Oi, A.; Ponti, M.; Del Zompo, M. Association of personal and familial suicide risk with low serum cholesterol concentration in male lithium patients. Acta Psychiatr. Scand. 2001, 104, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Modai, I.; Valevski, A.; Dror, S.; Weizman, A. Serum cholesterol levels and suicidal tendencies in psychiatric inpatients. J. Clin. Psychiatry 1994, 55, 252–254. [Google Scholar] [PubMed]
- Papassotiropoulos, A.; Hawellek, B.; Frahnert, C.; Rao, G.; Rao, M.L. The risk of acute suicidality in psychiatric inpatients increases with low plasma cholesterol. Pharmacopsychiatry 1999, 32, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P.F.; Joyce, P.R.; Bulik, C.M.; Mulder, R.T.; Oakley-Browne, M. Total cholesterol and suicidality in depression. Biol. Psychiatry 1994, 36, 472–477. [Google Scholar] [CrossRef]
- Hawthon, K.; Cowen, P.; Owens, D.; Bond, A.; Elliott, M. Low serum cholesterol and suicide. Br. J. Psychiatry 1993, 162, 818–825. [Google Scholar] [CrossRef] [PubMed]
- Engelberg, H. Low serum cholesterol and suicide. Lancet 1992, 339, 727–729. [Google Scholar] [CrossRef]
- Ahmadpanah, M.; Haghighi, M.; Jahangard, L.; Borzoei, S.; Heshmati, S.; Bajoghli, H.; Holsboer-Trachsler, E.; Brand, S. No evidence for metabolic syndrome and lipid profile differences in patients suffering from bipolar i disorder with and without suicide attempts. Int. J. Psychiatry Clin. 2015, 19, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Roohafza, H.; Sadeghi, M.; Afshar, H.; Mousavi, G.; Shirani, S. Evaluation of lipid profile in patient with major depressive disorder and generalized anxiety disorder. ARYA Atheroscler. 2010, 1, 1518. [Google Scholar]
- Peter, H.; Hand, I.; Hohagen, F.; Koenig, A.; Mindermann, O.; Oeder, F.; Wittich, M. Serum cholesterol level comparison: Control subjects, anxiety disorder patients, and obsessive-compulsive disorder patients. Can. J. Psychiatry 2002, 47, 557–561. [Google Scholar] [PubMed]
- Sevincok, L.; Buyukozturk, A.; Dereboy, F. Serum lipid concentrations in patients with comorbid generalized anxiety disorder and major depressive disorder. Can. J. Psychiatry 2001, 46, 68–71. [Google Scholar] [PubMed]
- Kagan, B.L.; Leskin, G.; Haas, B.; Wilkins, J.; Foy, D. Elevated lipid levels in vietnam veterans with chronic posttraumatic stress disorder. Biol. Psychiatry 1999, 45, 374–377. [Google Scholar] [CrossRef]
- Bajwa, W.K.; Asnis, G.M.; Sanderson, W.C.; Irfan, A.; Van Praag, H.M. High cholesterol levels in patients with panic disorder. Am. J. Psychiatry 1992, 149, 376–378. [Google Scholar] [PubMed]
- Agargun, M.Y.; Dulger, H.; Inci, R.; Kara, H.; Ozer, O.A.; Sekeroglu, M.R.; Besiroglu, L. Serum lipid concentrations in obsessive-compulsive disorder patients with and without panic attacks. Can. J. Psychiatry 2004, 49, 776–778. [Google Scholar]
- Agargun, M.Y.; Algun, E.; Sekeroglu, R.; Kara, H.; Tarakcioglu, M. Low cholesterol level in patients with panic disorder: The association with major depression. J. Affect. Disord. 1998, 50, 29–32. [Google Scholar] [CrossRef]
- Scanlon, S.M.; Williams, D.C.; Schloss, P. Membrane cholesterol modulates serotonin transporter activity. Biochemistry 2001, 40, 10507–10513. [Google Scholar] [CrossRef] [PubMed]
- Heron, D.S.; Shinitzky, M.; Hershkowitz, M.; Samuel, D. Lipid fluidity markedly modulates the binding of serotonin to mouse brain membranes. Proc. Natl. Acad. Sci. USA 1980, 77, 7463–7467. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Yang, S.; Mao, Y.; Jia, X.; Zhang, Z. Reduced cholesterol is associated with the depressive-like behavior in rats through modulation of the brain 5-HT1A receptor. Lipids Health Dis. 2015, 14, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Maes, M. The cytokine hypothesis of depression: Inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression. Neuro Endocrinol. Lett. 2008, 29, 287–291. [Google Scholar] [PubMed]
- Stewart, J.C.; Rand, K.L.; Muldoon, M.F.; Kamarck, T.W. A prospective evaluation of the directionality of the depression-inflammation relationship. Brain Behav. Immun. 2009, 23, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Kurano, M.; Iso-O, N.; Hara, M.; Noiri, E.; Koike, K.; Kadowaki, T.; Tsukamoto, K. Plant sterols increased il-6 and tnf-alpha secretion from macrophages, but to a lesser extent than cholesterol. J. Atheroscler. Thromb. 2011, 18, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.J.D.; Luchini, A.; Barberini, L.Y.; Precoma, L.; Torres, C.L.D.; Torres, R.A.D.; De Noronha, L.; Erbano, B.O.; Casella, A.M.B.; Precoma, D.B. Expression of tnf-alpha and il-6 cytokines in the choroid and sclera of hypercholesterolemic rabbits. Arq. Bras. Oftalmol. 2014, 77, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Zhang, H.X.; Baloch, Z. Pathogenetic and therapeutic applications of tumor necrosis factor-alpha (tnf-alpha) in major depressive disorder: A systematic review. Int. J. Mol. Sci. 2016, 17, 733–753. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ho, R.C.M.; Mak, A. Interleukin (il)-6, tumour necrosis factor alpha (tnf-alpha) and soluble interleukin-2 receptors (sil-2r) are elevated in patients with major depressive disorder: A meta-analysis and meta-regression. J. Affect. Disord. 2012, 139, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.J.; Yen, H.T.; Chen, Y.H.; Ku, H.H.; Lin, F.Y.; Chen, Y.L. Expression of interleukin-1 beta and interleukin-1 receptor antagonist in oxldl-treated human aortic smooth muscle cells and in the neointima of cholesterol-fed endothelia-denuded rabbits. J. Cell. Biochem. 2003, 88, 836–847. [Google Scholar] [CrossRef] [PubMed]
- Ovaskainen, Y.; Koponen, H.; Jokelainen, J.; Keinaenen-Kiukaannniemi, S.; Kumpusalo, E.; Vanhala, M. Depressive symptomatology is associated with decreased interleukin-1 beta and increased interleukin-1 receptor antagonist levels in males. Psychiatry Res. 2009, 167, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, A. Changes in plasma cholesterol in mood disorder patients: Does treatment make a difference? J. Affect. Disord. 2007, 99, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Whitney, E.J.; Krasuski, R.A.; Personius, B.E.; Michalek, J.E.; Maranian, A.M.; Kolasa, M.W.; Monick, E.; Brown, B.G.; Gotto, A.M. A randomized trial of a strategy for increasing high-density lipoprotein cholesterol levels: Effects on progression of coronary heart disease and clinical events. Ann. Intern. Med. 2005, 142, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Ghanizadeh, A.; Hedayati, A. Augmentation of fluoxetine with lovastatin for treating major depressive disorder, a randomized double-blind placebo controlled-clinical trial. Depress. Anxiety 2013, 30, 1084–1088. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, M.; Khodakarami, S.; Jahangard, L.; Ahmadpanah, M.; Bajoghli, H.; Holsboer-Trachsler, E.; Brand, S. In a randomized, double-blind clinical trial, adjuvant atorvastatin improved symptoms of depression and blood lipid values in patients suffering from severe major depressive disorder. J. Psychiatr. Res. 2014, 58, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Parsaik, A.K.; Singh, B.; Murad, M.H.; Singh, K.; Mascarenhas, S.S.; Williams, M.D.; Lapid, M.I.; Richardson, J.W.; West, C.P.; Rummans, T.A. Statins use and risk of depression: A systematic review and meta-analysis. J. Affect. Disord. 2014, 160, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Salehi, I.; Hosseini, S.M.; Haghighi, M.; Jahangard, L.; Bajoghli, H.; Gerber, M.; Puhse, U.; Holsboer-Trachsler, E.; Brand, S. Electroconvulsive therapy (ect) and aerobic exercise training (aet) increased plasma bdnf and ameliorated depressive symptoms in patients suffering from major depressive disorder. J. Psychiatr. Res. 2016, 76, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kurt, E.; Guler, O.; Serteser, M.; Cansel, N.; Ozbulut, O.; Altınbaş, K.; Alataş, G.; Savaş, H.; Gecici, O. The effects of electroconvulsive therapy on ghrelin, leptin and cholesterol levels in patients with mood disorders. Neurosci. Lett. 2007, 426, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, G.; Ecker, J. The opposing effects of n-3 and n-6 fatty acids. Prog. Lipid Res. 2008, 47, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, C.E.; Young, S.N. Dietary fat intake and the brain: A developing frontier in biological psychiatry. J. Psychiatr. Neurosci. 2001, 26, 182. [Google Scholar]
- Martinez, M. Tissue levels of polyunsaturated fatty acids during early human development. J. Pediatr. 1992, 120, S129–S138. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 1991, 54, 438–463. [Google Scholar] [PubMed]
- Bourre, J. Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing. J. Nutr. 2004, 8, 163–174. [Google Scholar]
- Maes, M.; Smith, R.; Christophe, A.; Cosyns, P.; Desnyder, R.; Meltzer, H. Fatty acid composition in major depression: Decreased ω3 fractions in cholesteryl esters and increased c20: 4ω6c20: 5ω3 ratio in cholesteryl esters and phospholipids. J. Affect. Disord. 1996, 38, 35–46. [Google Scholar] [CrossRef]
- Hibbeln, J.R.; Salem, N. Dietary polyunsaturated fatty acids and depression: When cholesterol does not satisfy. Am. J. Clin. Nutr. 1995, 62, 1–9. [Google Scholar] [PubMed]
- Maes, M.; Christophe, A.; Delanghe, J.; Altamura, C.; Neels, H.; Meltzer, H.Y. Lowered ω3 polyunsaturated fatty acids in serum phospholipids and cholesteryl esters of depressed patients. Psychiatry Res. 1999, 85, 275–291. [Google Scholar] [CrossRef]
- Peet, M.; Murphy, B.; Shay, J.; Horrobin, D. Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biol. Psychiatry 1998, 43, 315–319. [Google Scholar] [CrossRef]
- Edwards, R.; Peet, M.; Shay, J.; Horrobin, D. Omega-3 polyunsaturated fatty acid levels in the diet and in red blood cell membranes of depressed patients. J. Affect. Disord. 1998, 48, 149–155. [Google Scholar] [CrossRef]
- Hibbeln, J.R. Fish consumption and major depression. Lancet 1998, 351, 1213. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The Return of W3 Fatty Acids into the Food Supply: Land-Based Animal Food Products and Their Health Effects; Karger Medical and Scientific Publishers: Washington, DC, USA, 1998. [Google Scholar]
- Yoshikawa, E.; Nishi, D.; Matsuoka, Y. Fish consumption and resilience to depression in Japanese company workers: A cross-sectional study. Lipids Health Dis. 2015, 14, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Villegas, A.; Henriquez, P.; Figueiras, A.; Ortuno, F.; Lahortiga, F.; Martinez-Gonzalez, M.A. Long chain omega-3 fatty acids intake, fish consumption and mental disorders in the sun cohort study. Eur. J. Nutr. 2007, 46, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Del Brutto, O.H.; Mera, R.M.; Gillman, J.; Zambrano, M.; Ha, J.E. Oily fish intake and cognitive performance in community-dwelling older adults: The atahualpa project. J. Commun. Health 2016, 41, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Bountziouka, V.; Polychronopoulos, E.; Zeimbekis, A.; Papavenetiou, E.; Ladoukaki, E.; Papairakleous, N.; Gotsis, E.; Metallinos, G.; Lionis, C.; Panagiotakos, D. Long-term fish intake is associated with less severe depressive symptoms among elderly men and women: The medis (Mediterranean Islands elderly) epidemiological study. J. Aging Health 2009, 21, 864–880. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.J.; Sanderson, K.; McNaughton, S.A.; Gall, S.L.; Dwyer, T.; Venn, A.J. Longitudinal associations between fish consumption and depression in young adults. Am. J. Epidemiol. 2014, 179, 1228–1235. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Dai, Q.; Ekperi, L.I.; Dehal, A.; Zhang, J. Fish consumption and severely depressed mood, findings from the first national nutrition follow-up study. Psychiatry Res. 2011, 190, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Van West, D.; Maes, M. Polyunsaturated fatty acids in depression. Acta Neuropsychiatr. 2003, 15, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Rao, T.S.; Asha, M.; Ramesh, B.; Rao, K.J. Understanding nutrition, depression and mental illnesses. Indian J. Psychiatry 2008, 50, 77–82. [Google Scholar]
- Adams, P.B.; Lawson, S.; Sanigorski, A.; Sinclair, A.J. Arachidonic acid to eicosapentaenoic acid ratio in blood correlates positively with clinical symptoms of depression. Lipids 1996, 31, S157–S161. [Google Scholar] [CrossRef] [PubMed]
- Hibbeln, J.R. Depression, suicide and deficiencies of omega-3 essential fatty acids in modern diets. World Rev. Nutr. Diet. 2009, 99, 17–30. [Google Scholar] [PubMed]
- Tiemeier, H.; Van Tuijl, H.R.; Hofman, A.; Kiliaan, A.J.; Breteler, M.M. Plasma fatty acid composition and depression are associated in the elderly: The rotterdam study. Am. J. Clin. Nutr. 2003, 78, 40–46. [Google Scholar]
- Riemer, S.; Maes, M.; Christophe, A.; Rief, W. Lowered omega-3 pufas are related to major depression, but not to somatization syndrome. J. Affect. Disord. 2010, 123, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Frasure-Smith, N.; Lesperance, F.; Julien, P. Major depression is associated with lower omega-3 fatty acid levels in patients with recent acute coronary syndromes. Biol. Psychiatry 2004, 55, 891–896. [Google Scholar] [CrossRef] [PubMed]
- Beydoun, M.A.; Fanelli Kuczmarski, M.T.; Beydoun, H.A.; Rostant, O.S.; Evans, M.K.; Zonderman, A.B. Associations of the ratios of n-3 to n-6 dietary fatty acids with longitudinal changes in depressive symptoms among us women. Am. J. Epidemiol. 2015, 181, 691–705. [Google Scholar] [CrossRef] [PubMed]
- Fehily, A.M.; Bowey, O.A.; Ellis, F.R.; Meade, B.W.; Dickerson, J.W. Plasma and erythrocyte membrane long chain polyunsaturated fatty acids in endogenous depression. Neurochem. Int. 1981, 3, 37–42. [Google Scholar] [CrossRef]
- Aupperle, R.L.; Denney, D.R.; Lynch, S.G.; Carlson, S.E.; Sullivan, D.K. Omega-3 fatty acids and multiple sclerosis: Relationship to depression. J. Behav. Med. 2008, 31, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.Y.; Huang, S.Y.; Su, K.P. A meta-analytic review of polyunsaturated fatty acid compositions in patients with depression. Biol. Psychiatry 2010, 68, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Hirashima, F.; Parow, A.M.; Stoll, A.L.; Demopulos, C.M.; Damico, K.E.; Rohan, M.L.; Eskesen, J.G.; Zuo, C.S.; Cohen, B.M.; Renshaw, P.F. Omega-3 fatty acid treatment and t2 whole brain relaxation times in bipolar disorder. Am. J. Psychiatry 2004, 161, 1922–1924. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Gao, H.C.; Li, Q.; Shao, W.H.; Zhang, M.L.; Cheng, K.; Yang, D.Y.; Fan, S.H.; Chen, L.; Fang, L. Plasma metabonomics as a novel diagnostic approach for major depressive disorder. J. Proteome Res. 2012, 11, 1741–1748. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, V.K.; Huang, B.X.; Kim, H.–Y. Effects of docosahexaenoic acid on mouse brain synaptic plasma membrane proteome analyzed by mass spectrometry and 16o/18o labeling. J. Proteome Res. 2011, 10, 5472–5480. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Kevala, K.; Kim, J.; Moon, H.S.; Jun, S.B.; Lovinger, D.; Kim, H.Y. Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function. J. Neurochem. 2009, 111, 510–521. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-Y.; Moon, H.-S.; Cao, D.; Lee, J.; Kevala, K.; Jun, S.B.; Lovinger, D.M.; Akbar, M.; Huang, B.X. N-docosahexaenoylethanolamide promotes development of hippocampal neurons. Biochem. J. 2011, 435, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Mayurasakorn, K.; Niatsetskaya, Z.V.; Sosunov, S.A.; Williams, J.J.; Zirpoli, H.; Vlasakov, I.; Deckelbaum, R.J.; Ten, V.S. Dha but not epa emulsions preserve neurological and mitochondrial function after brain hypoxia-ischemia in neonatal mice. PLoS ONE 2016, 11, e0160870. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Montes, L.G.; Valles-Sanchez, V.; Moreno-Aguilar, J.; Chavez-Balderas, R.A.; García-Marín, J.A.; Sotres, J.C.; Hheinze-Martin, G. Relation of serum cholesterol, lipid, serotonin and tryptophan levels to severity of depression and to suicide attempts. J. Psychiatry Neurosci. 2000, 25, 371–377. [Google Scholar]
- DiPatrizio, N.V.; Piomelli, D. The thrifty lipids: Endocannabinoids and the neural control of energy conservation. Trends Neurosci. 2012, 35, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Patterson, E.; Wall, R.; Fitzgerald, G.F.; Ross, R.P.; Stanton, C. Health implications of high dietary omega-6 polyunsaturated fatty acids. J. Nutr. Metab. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Omega-3 polyunsaturated fatty acids and inflammatory processes: Nutrition or pharmacology? Br. J. Clin. Pharmacol. 2013, 75, 645–662. [Google Scholar] [CrossRef] [PubMed]
- O'Brien, S.M.; Scott, L.V.; Dinan, T.G. Cytokines: Abnormalities in major depression and implications for pharmacological treatment. Hum. Psychopharm. Clin. 2004, 19, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Awada, M.; Meynier, A.; Soulage, C.O.; Hadji, L.; Geloen, A.; Viau, M.; Ribourg, L.; Benoit, B.; Debard, C.; Guichardant, M.; et al. N-3 pufa added to high-fat diets affect differently adiposity and inflammation when carried by phospholipids or triacylglycerols in mice. Nutr. Metab. 2013, 10, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Gura, K.M.; Kim, S.; Arsenault, D.A.; Bistrian, B.R.; Puder, M. Current clinical applications of ω-6 and ω-3 fatty acids. Nutr. Clin. Pract. 2006, 21, 323–341. [Google Scholar] [CrossRef] [PubMed]
- Peet, M.; Horrobin, D.F. A dose-ranging exploratory study of the effects of ethyl-eicosapentaenoate in patients with persistent schizophrenic symptoms. J. Psychiatr. Res. 2002, 36, 7–18. [Google Scholar] [CrossRef]
- Appleton, K.M.; Rogers, P.J.; Ness, A.R. Updated systematic review and meta-analysis of the effects of n-3 long-chain polyunsaturated fatty acids on depressed mood. Am. J. Clin. Nutr. 2010, 91, 757–770. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.-Y.; Su, K.-P. A meta-analytic review of double-blind, placebo-controlled trials of antidepressant efficacy of omega-3 fatty acids. J. Clin. Psychiatry 2007, 68, 1056–1061. [Google Scholar] [CrossRef]
- Sublette, M.E.; Ellis, S.P.; Geant, A.L.; Mann, J.J. Meta-analysis of the effects of eicosapentaenoic acid (epa) in clinical trials in depression. J. Clin. Psychiatry 2011, 72, 1577–1584. [Google Scholar] [CrossRef] [PubMed]
- Bloch, M.H.; Hannestad, J. Omega-3 fatty acids for the treatment of depression: Systematic review and meta-analysis. Mol. Psychiatry 2012, 17, 1272–1282. [Google Scholar] [CrossRef] [PubMed]
- Hamazaki, T.; Sawazaki, S.; Itomura, M.; Asaoka, E.; Nagao, Y.; Nishimura, N.; Yazawa, K.; Kuwamori, T.; Kobayashi, M. The effect of docosahexaenoic acid on aggression in young adults. A placebo-controlled double-blind study. J. Clin. Investig. 1996, 97, 1129–1133. [Google Scholar] [CrossRef] [PubMed]
- Hamazaki, T.; Sawazaki, S.; Nagasawa, T.; Nagao, Y.; Kanagawa, Y.; Yazawa, K. Administration of docosahexaenoic acid influences behavior and plasma catecholamine levels at times of psychological stress. Lipids 1999, 34, S33–S37. [Google Scholar] [CrossRef] [PubMed]
- Itomura, M.; Hamazaki, K.; Sawazaki, S.; Kobayashi, M.; Terasawa, K.; Watanabe, S.; Hamazaki, T. The effect of fish oil on physical aggression in schoolchildren-a randomized, double-blind, placebo-controlled trial. J. Nutr. Biochem. 2005, 16, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Carrie, I.; Clement, M.; De Javel, D.; Frances, H.; Bourre, J.M. Phospholipid supplementation reverses behavioral and biochemical alterations induced by n-3 polyunsaturated fatty acid deficiency in mice. J. Lipid Res. 2000, 41, 473–480. [Google Scholar] [PubMed]
- Lim, S.Y.; Suzuki, H. Dose–response effect of docosahexaenoic acid ethyl ester on maze behavior and brain fatty acid composition in adult mice. Int. J. Vitam. Nutr. Res. 2002, 72, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Moriguchi, T.; Salem, N., Jr. Recovery of brain docosahexaenoate leads to recovery of spatial task performance. J. Neurochem. 2003, 87, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Fujino, T.; Yamamoto, T. Cloning and functional expression of a novel long-chain acyl-coa synthetase expressed in brain. J. Biochem. 1992, 111, 197–203. [Google Scholar] [PubMed]
- Setnik, B.; Nobrega, J.N. Long-chain acyl-coenzymea synthetase-2 mrna: Increased cerebral cortex expression in an animal model of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2004, 28, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Vinod, K.Y.; Xie, S.; Psychoyos, D.; Hungund, B.L.; Cooper, T.B.; Tejani-Butt, S.M. Dysfunction in fatty acid amide hydrolase is associated with depressive-like behavior in wistar kyoto rats. PLoS ONE 2012, 7, e36743. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.-F.; Xiang, Y.; Wei, Y.-S. The significance of routine biochemical markers in patients with major depressive disorder. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.M.; Halaas, J.L. Leptin and the regulation of body weight in mammals. Nature 1998, 395, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Bijker, M.S.; Herzog, H. The neuropeptide y system: Pathophysiological and therapeutic implications in obesity and cancer. Pharmacol. Ther. 2011, 131, 91–113. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.L.; Liu, D.X.; Jiang, H.; Pan, F.; Ho, C.S.; Ho, R.C. The effects of high-fat-diet combined with chronic unpredictable mild stress on depression-like behavior and leptin/leprb in male rats. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Morales-Medina, J.C.; Dumont, Y.; Quirion, R. A possible role of neuropeptide y in depression and stress. Brain Res. 2010, 1314, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Schulz, C.; Paulus, K.; Johren, O.; Lehnert, H. Intranasal leptin reduces appetite and induces weight loss in rats with diet-induced obesity (dio). Endocrinology 2012, 153, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. Omega-3 fatty acids in inflammation and autoimmune diseases. J. Am. Coll. Nutr. 2002, 21, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Leonard, B.E. The immune system, depression and the action of antidepressants. Prog. Neuropsychopharmacol. Biol. Psychiatry 2001, 25, 767–780. [Google Scholar] [CrossRef]
- Parker, G.; Roy, K.; Mitchell, P. Assessing the comparative effectiveness of antidepressant therapies: A prospective clinical practice study. J. Clin. Psychiatry 2001, 62, 117–125. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parekh, A.; Smeeth, D.; Milner, Y.; Thuret, S. The Role of Lipid Biomarkers in Major Depression. Healthcare 2017, 5, 5. https://doi.org/10.3390/healthcare5010005
Parekh A, Smeeth D, Milner Y, Thuret S. The Role of Lipid Biomarkers in Major Depression. Healthcare. 2017; 5(1):5. https://doi.org/10.3390/healthcare5010005
Chicago/Turabian StyleParekh, Amy, Demelza Smeeth, Yasmin Milner, and Sandrine Thuret. 2017. "The Role of Lipid Biomarkers in Major Depression" Healthcare 5, no. 1: 5. https://doi.org/10.3390/healthcare5010005
APA StyleParekh, A., Smeeth, D., Milner, Y., & Thuret, S. (2017). The Role of Lipid Biomarkers in Major Depression. Healthcare, 5(1), 5. https://doi.org/10.3390/healthcare5010005